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Abstract

We study a formulation of the standard Poisson sigma model in which the target space Poisson
manifold carries the Hamilton action of some finite-dimensional Lie algebra. We show that the
structure of the action and the properties of the gauge invariant observables can be understood in
terms of the associated target space equivariant conomology. We use a de Rham superfield formalism
to efficiently explore the implications of the Batalin—Vilkoviski master equation.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

A Poisson manifold is a manifold equipped with a Poisson structure. The Poisson sigma
model associates to any Poisson manifold a two-dimensional sigma model having the Pois-
son manifold as target spafk-3]. By means of suitable choices of the Poisson structure,
it is possible to reproduce a wealth of interesting models, such as two-dimeng®nal
gravity, two-dimensional gauge theory and two-dimensional Wess—Zumino—Witten model
(see Ref[4] for a clear review). More recently, Kontsevich’s formulation of deformation
quantization of the algebra of functions on a Poisson manjfgjithas been interpreted in
terms of the perturbation theory of the corresponding quantum Poisson sigma model on the
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two-dimensional disk6-9]. This universality and versatility of the Poisson sigma model
justifies the large body of literature devoted to its study.

In many respects, the Poisson sigma model is a gauge theory whose symmetry is based
on a Poisson algebra. This makes it interesting, but it also poses a number of new prob-
lems, especially at the quantum level, due to the singularity of the kinetic terms and the
nonlinearity of the symmetry. In this respect, the Batalin—Vilkoviski quantization algorithm
[10] is essential for achieving a consistent quantizafp8]. We feel that a more thorough
investigation of the geometry of the model is desirable to reach a better handle on these
issues.

It is often stated that the Poisson sigma model is a kind of topological field theory. The
known topological field theories are divided into two broad classes, those of Schwartz
or metric independent type, such as the three-dimensional Chern—Simons theory and the
two-dimensional BF theory, and those of Witten or cohomological type, such as supersym-
metric quantum mechanics and the Donaldson-Witten theory[{4e&2] for a detailed
treatment of these models and exhaustive referencing). The Poisson sigma model does not
seem to fall in either of them. However, we have found that, when the target space Poisson
manifold carries the Hamilton action of some finite-dimensional Lie algebra, as it happens
in virtually all the most interesting examples, it has a hidden equivariant cohomological
structure, that makes it akin to the cohomological theories and determines to a considerable
degree the structure of the action and the properties of the gauge invariant observables. The
present paper is devoted to the study of this matter.

Our analysis relies to a great extent on an abstract algebraic framework, called operation,
whose main properties are revieweddaction 2 Briefly, ag operation ovelZ consists of
a Lie algebrag, a graded associative algelifaand a set of derivationg&), i(§), & € g,
ands on Z of degrees-1, 0,+1, respectively, satisfying the graded commutation relations
(1.1). Everyg operation oveZ admits a canonical equivariant extension. There are three
cohomologies associated with the nilpotent derivati@rdinary,g basic andy equivariant.

The elements of our construction are provided by the rich geometry of Poisson manifolds,
whose basic facts are reviewed $ection 3 The main geometric datum of a Poisson
manifold M is a 2-vectorw'l, satisfying the Poisson conditiq@.1), in terms of which
the Poisson brackefs} on the algebra of functions aif are defined. The Lie algebra of
Poisson vector fields a¥ is the symmetry Lie algebra of the Poisson structurdfoénd
thus plays an essential role. In applications, however, it is often natural to restrict oneself
to the Lie subalgebra of Hamilton vector fields.

When a Poisson manifoltf carries the Poisson or Hamilton action of some Lie algebra
b, one can define alp operation over the space of functions of the superbundI&7* M
and itsh equivariant extensioITTIT* M allows for a natural unified description of the
inducedh action on multivectors and forms #1. This construction is expounded in detalil
in Sections 4-8

Forms on a two-dimensional manifolH can be viewed as elements of the space of
functions on superbundlETX, which we shall call de Rham superfields. This formalism,
which is illustrated infSection 9turns out to be elegant and convenient.

One can construct a de Rham superfield realization ofy tbquivariant operation over
TTTITT* M simply by promoting each of its generatatsy;, y¢, etc. to a de Rham superfield.

This leads to aff) operation over a formal graded associative algebra of superfields, referred
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to ash Hamilton de Rham superfield operation. THeasic cohomology of this is intimately
related to they equivariant cohomology offTITT* M. Although obvious, this fact lies at
the heart of our analysis of the Poisson sigma model, expoundgetitions 10—12vhich
we now outline briefly.

Consider a Poisson manifold with Poisson 2-vectow'! carrying the Hamilton action
of some finite-dimensional Lie algebhalet i, be the functions oM corresponding via
the action to fiducial generatofsof h with structure constants,, so that

{ha, hp} = cgphec. (1.1)

Finally, letz! be a 2-vector oM. The action of the Poisson sigma model is
1
Sy = / % <yi dx' + 5”” (X)yiyj — dyaha(X)) , (1.2)
X

wherex!, y;, y* are generators of thgHamilton de Rham superfield operation gndhe
integration supermeasure bf S,; satisfies the Batalin—Vilkoviski classical master equation
if 7! is a Poisson 2-vector and if

78;h, = 0. (1.3)

So, 7!l defines another Poisson structureMrwith respect to which the functioris, are
Casimir (cf.Eq. (2.5). However, we stress that, when we refepMas a Poisson manifold,
the underlying Poisson structure implied is that associates!'tdl he crucial result is

jNSz =0, NSz =0, 58, =0 (1.4)

forr € b, if 7'l Schouten commutes withl. Eq. (1.4)then states thal,, is a representative

of a degree () basic cohomology class of Hamilton de Rham superfield operation. The
Batalin—Vilkoviski nilpotent variatios,, and the derivationg(r), [(r) ands (anti)commute.
Thus, the Batalin—Vilkoviski cohomology and tfyebasic Hamilton de Rham superfield
cohomology are compatible.

Whenr' = &'l theh equivariant cohomology QI TTIT* M degenerates in the ordinary
one, because, biL.3), the Hamilton action is given through Casimir functions and thus is
trivial. Correspondingly, thg basic Hamilton de Rham superfield cohomology reduces to
the Batalin—Vilkoviski cohomology.

Thisis notas disappointing as it may seem at first sight. It often happens that a complicated
Poisson 2-vectar!! can be written as

.l (1.5)

wherew is a well understood Poisson 2-vector aﬂd’another_l?oisson 2-vector Schouten
commuting withe! . One canthen view! as a perturbation af and try to understand the
7! Poisson sigma model as a perturbation ofttePoisson sigma model. There are plenty
of such examples, such as tRé gravity Poisson sigma model and the affine Lie—Poisson
sigma model. More examples are illustrateciection 13

All known topological field theories of cohomological type are characterized by a Lie
group g, a space of field$ carrying a rightG action, a certair operation overP and
an actionS that is a representative of a degre§ Basic or equivariant cohomology class
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of P [13]. Apparently, the Poisson sigma model has a very similar structure. The analogy,
however, stops here. In the topological field theories of cohomological type, the isup
infinite-dimensional and the actighis a Mathai—Quillen representative of the Thom class
of some vector bundI€ overP/G and describes localization on the zero locus of certain
sections off [14,15] So far, a similar interpretation does not seem to be possible for the
version of the Poisson sigma model studied in this paper.

2. Generalities on basic and equivariant conomology

Our analysis of the Poisson sigma model is based on a formal algebraic framework,
called operation, whose main properties we shall now review (se¢I®¢for background
material).

A g operation ovelZ is a quintuplet(Z, g, j, [, s), whereg is a Lie algebraZ a graded
associative algebra and), /(§), & € g, ands the graded derivations dn of degree-1, 0,
+1, respectively, satisfying Cartan’s algebra:

i), jm] =0, [1®), jm] = j([& nD, [1(5), I(m] = I([&, nD),
[S’ J(U)] = 1(77), [S, 1(77)] =0, [S’ S] =0, (21)

where the above are graded commutators. In all examples considered below, the graded
algebraZ is finitely generated. So, the graded derivatig(®, /(§) ands are completely
defined by their action on a suitable set of natural generators.

Sinces? = 0, one can define the cohomology of the differential compléxs). This
is called ordinary cohomology of. More importantly, one may consider the differential
complex(Zpasic §), WhereZpasicis thes invariant subalgebra of annihilated by allj(&),
1(§), & € g. The corresponding cohomology is referred tgdmsic cohomology oF.

To any Lie algebra, there is canonically associated the Weil operatiiig), g, j, I, s).
Here,W(g) = A(g¥) ® S(g"), whereA(g") andS(g") are the antisymmetric, symmetric
algebras ofy”, respectively. The naturgtvalued generators, $2 of W(g) carry degrees
1, 2, respectively, and satisfy

j@w =E§, Jj§$2 =0, I®)ow = —[§ ], 1§)82 = —[§, £,
sw = 2 — %[a), o], 2 = —|w, £2]. (2.2)

The cohomology oW (g) is trivial. Theg basic cohomology oW(g) is isomorphic to the
adg invariant subalgebra &f(g").

For a given operatio(Z, g, j, I, s), one can construct the operatiGf@W(g), g, j. L, s),
where® denotes graded tensor produ@®W(g), g, j, I, s) is called equivariant extension
of (Z, g, j, 1, 5). Theg basic cohomology oZ&W(g) is calledg equivariant cohnomology
of Z. Representatives @f equivariant conomology classes Bfin Z&W(g) yield repre-
sentatives ofy basic cohomology classes @fby replacing the Weil generatots 2, by
a connectionz, A of Z, i.e. a pair of elements, A of Z ® g of degree 1, 2, respectively,
satisfying(2.2) with w, £2 replaced by, A (Weil homomorphism).
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A homomorphism of the operatiai¥, g, j, ., s) into the operatioZ’, ¢, j/,I',s') isa
pair (f, ), wheref : Z — Z'is a degree zero graded algebra homomorphismy’ — g
is a Lie algebra homomorphism and

J@E) o f=fojuE), I'E)o f=folln@E, slof=fos (23)

with & € ¢'. Clearly,(f. ) induces a homomorphism of tlyebasic cohomology of into
the g’ basic cohomology of’.

If u: g — gisalLie algebra homomorphism, then the gait', ) is a homomorphism
of the Weil operation of (W(g), g, J, [, s) into the Weil operation of’ (W(g'), ¢, j'.l', ),
wheren” denotes the natural extensionWdg) of the dual linear homomorphisma” :
g’ — g¢’v. The generatore, 2, o', 2’ of W(g), W(g'), respectively, obey the important
relations

pY (@) = p(), Y (82) = u(s2). (2.4)

By combining these identities witt2.3) with f = w1V, we find that the action of (¢),
I'(£). & € g ands’ on (), u(82') is obtained from that of (. (¢')), (i (¢))) ands onw,
22, Eq. (2.2) by applyingu”.

If (f ) is ahomomorphism of the operatiof g, j, 1, s), (Z', g, j', ', ), (f&u", )
is a homomorphism of the corresponding equivariant extensi@sw(g), g, j, [, ),
(Z’®W(g), g, j.l'.s') and induces a homomorphism of thesquivariant cohomology
of Z into theg’ equivariant cohomology of’.

If (Z,g,]j,1,5)is an operation ang : g’ — g is a Lie algebra homomorphism, we can
define a new operatiofZ, ¢/, j/, ', s') by setting

JE) = j(n@&), &) =1nE)), s'=s (2.5)

with & € g. (Z, ¢, j,l,s) is called pull-back of(Z, g, j, 1, s) by w. In the particular
case wherg' is a Lie subalgebra af andu the natural inclusionZ, ¢’, j/, ', s') is called
restrictionof(Z, g, j, I, s)tog’. (idz, u) isahomomorphism of the operatiot$ g, j, I, s),
(Z,¢,j,l,s"), which induces an injection of thg basic cohomology into thg’ basic
cohomology ofZ. Similarly, (id &, 1) is a homomorphism of the associated equivariant
extensiong Z®W(g), g, j, 1, s), (Z&W(g'), ¢, j/. ', s"), which induces a homomorphism
of theg equivariant conomology into thg equivariant cohnomology of.

A wide class of operations is built as follows. Consider: (i) a Lie gréupith Lie
algebra Ligg; (ii) a principal G bundlenp : P — M. DefineZ = 2*(P), g = Lieg,
J(&) = jp(Ce), 1(§) = Ip(Ce), for & € g, ands = dp, where2*(P) is the graded algebra
of differential forms ofP, jp, Ip anddp the customary differential geometric contraction,
Lie derivative and de Rham differential operators, respectively,Gnithe vertical vector
field corresponding t&. The resulting quintupletZz, g, j, [, s) is an operation. It basic
cohomology is isomorphic to the de Rham cohomology of the Base

Typically, in cohomological topological quantum field theogyis a gauge groug? a
supermanifold of gauge and matter fields propagating on a space—time manhdaliiM
some sort of gauge orbit or moduli spgdd,12]. Representatives of equivariant classes,
known as topological observables, play an important role, since they yield via the Welil
homomorphism forms oM, which can be used to probe its structure. They are obtained
by integrating on cycles ok certain differential forms o built with the fields. One is
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thus interested in mod d equivariant classes, where d is the Rham differenkalTdifis
leads to the well-known descent formali$h8].

3. Generalities on Poisson manifolds

The target space of the Poisson sigma model is a Poisson manifold. We shall now briefly
review the properties of Poisson manifolds relevant in the following discussion (see Ref.
[17] for background material).

By definition, a manifoldV is Poisson if it is equipped with a 2-vecter! satisfying the
relation

[w, @] =0, ie oy + o N + gl = 0. (3.1)

Here and below;, [ -] denotes the Schouten brackets, the only natural pairing of multivectors
defined on any manifold.
On a Poisson manifold, one can define Poisson brackets of (local) fungtigns

(f g} =" 9 foje. (32)
On account 0f3.1), one indeed has

{fgt+{s f1=0, (3.3)

{f{g. n}+{g {h, fBY+1{h {fg}} =0 (3.4)

In this way, the space of functions Fud) becomes a Lie algebra, the Poisson algebra of
M.
Functionsy satisfying

[@, f]=0, ie wld;f=0 (3.5)

are called Casimir functions. SughPoisson commute with any functign{ f, ¢} = 0. So,
they form the center Cé&f) of Fun(M).
Vector fieldsu’ such that

[w,u] =0, ie W’ — pu'ew™ — Gu/w™ =0 (3.6)

are called Poisson vector fields. Suélare precisely the vector fields leaving invariant,
since(3.6) states thaty (u)@" = 0, I;(u) being the usual Lie derivative. The Poisson
vector fields:' of the form

ur=—[w, f], ie ulf = a9, f (3.7)

for some functionf are called Hamilton vector fields.

The Poisson vector fields span a Lie subalgebra(®Ppisf the Lie algebra Ve¢i) of
the vector fields off. The Poisson vector fields are the natural symmetry Lie algebra of a
Poisson manifold and of the associated geometrical structures. The Hamilton vector fields
form a Lie subalgebra HaW) of Poig M) as

[y, ugl = ugrg (3.8)



R. Zucchini/ Journal of Geometry and Physics 48 (2003) 219-244 225

for any two functionsf, g. So,(3.7) establishes a canonical surjective Lie algebra homo-
morphism FuiM) — Ham(M) with kernel CagM).

On a Poisson manifold, one can define a natural degfeeperator acting on a general
p-vectorgitiv:

q¢ = @, ¢]. (3.9)
Using(3.1), it is easy to verify that
¢* =0. (3.10)

Hence, a Poisson manifold has a natural notion of cohomology, called Poisson—-Lichnerowicz
cohomology. Since

[¢. M) =0 (3.11)

for any Poisson vector field’, one can define a Poisson (Hamilton) invariant Poisson—
Lichnerowicz cohomology by restrictingto the complex of multivectors» such that
Iy (u)¢'t'r = 0 for all Poisson vector fields' (Iy (u )¢t » = 0 for all functionsf).

The 0 Poisson-Lichnerowicz cocycles are the Casimir functions and span the zeroth
Poisson-Lichnerowicz cohomology. The 1 Poisson—Lichnerowicz cocycles are the Poisson
vector fields, the 1 Poisson—Lichnerowicz coboundaries are the Hamilton vector fields. So,
the first Poisson-Lichnerowicz cohomology is the quotient of the Poisson by the Hamilton
vector field spaces. Itis possible to show that the second Poisson-Lichnerowicz cohomology
describes the space of the infinitesimal deformagibof the Poisson 2-vectas” modulo
the deformations of the fority, («)" for some vector field!.

4. The Poisson and the Poisson equivariant operation of ITTM

We are now going to construct the operations relevant in the following analysis. For a
given Poisson manifold/, all these are) operations over the graded associative algebra
Fun(ITTIIT* M) of functions of the superbundlETIIT*M, or its equivariant extension
Fun(IITIT* M)QW($), where$) is some relevant Lie subalgebra of Viedh and IT the
fiber parity inversion functor. Further, they all have a natural set of generetaxs’, y;,

Yf with the following degree assignments:

degx’ =0, degx® =1, degy; = 1, degy? =2 (4.1)

and transformation properties under a change of local coordinates:

: : 7 8t/i : 8[1
X" =1t"(x), X" = E(X)tha Vi = ﬁ(x)yj’
g _ j gy, .
7= g+ (WW) DXy, “2

There are canonical injections of the spacgs-wéctors ang-forms of M into the graded al-
gebra FUIITIIT* M) or its equivariant extension FURTIIT* M)@ W($). To anyp-vector
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Bi1ir, one associates

Blx, y) = %ﬂ"l”"’p(x)yil S Vi (4.3)
Similarly, to anyp-form oy, ..;,, One associates

olx, X% = p—llail...ip (x)X%1... x5, (4.4)

These representations are very convenient and will be used throughout.

The fundamental differential operation BfTM is defined independently from any dif-
ferential geometric structure ov. It is the Vlect M) operation over FU(ITIIT* M) with
natural generatorg, X', y;, ¥; obeying

ja)x' =0, Iw)x' = u' (x), s¥ = X/,
J) X = u' (x), lu)X' = dju’ (x)X, sX =0,
j@yi=0, 1wy ==/ x)y;  sy=Yi,
J@Yi = =0l @y, W)Y = =l Y — idu )Xy, sk =0
(4.5)
with «! any vector field in VeatV). )
If M is a Poisson manifold with Poisson 2-vectot, the natural symmetry Lie algebra
is the subalgebra of Ve@¥) leavingz" invariant, i.e. the Poisson Lie algebra Roi®
(cf. Section 3. The Poisson differential operation 6fTM is obtained by restricting the

fundamental differential operation i TM to PoigM) (cf. S_ection 2. It is the PoisM)
operation over FUITIIT* M) with natural generatorg, X*, y;, Y/ obeying

jax' =0,  Iwx =u(x), X =X"+a )y,
JXT =u (), MwX* =l X, X = —al()YF - ;o WXy,

J@yi =0, Ly =—dul@)y;, sy =Y+ 30y,
JWYF ==l 0y M@Y= —du! (x)YF — 8;0;u" () Xy,
Y = =380, 0O X yiy + i () y, Y, (4.6)

where now’ is any Poisson vector field in Poid) (cf. Eq. (3.6). The Poisson generators
X*, Y are related to the fundamental generafotsy; by the simple shifts

X=X~V y;, Y=Y 20050y (4.7)
Such shifts have a simple geometrical interpretation:
q)( — x)y;, qy; = —%Biwjk(x)yjyk, (4.8)

whereg is defined in(3.9).
Next, we consider the Weil operation of the Lie algebra Bdis(cf. Section 2. It is
the PoigM) operation over the Weil algebi@(Poig M)) with natural Poisson vector field
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valued generators’, 2’ satisfying the form of the Weil operation relatiof@s2)appropriate
for PoigM). It turns out to be more efficient to combing, 22! with the generators’ to
form compositesy’ (x), £2/(x), by replacing the dummy local coordinatésappearing in
the local expression’ (1), 2! (1) of ', 2/ by x. The Poisson—Weil generatan§(x), 2 (x)
carry degrees:

dege’(x) = 1, deg’(x) = 2 (4.9)
by being Poisson vector fields satisfy

(@ — ho'wN — 0’ m™)(x) =0,

Q) — 52N — 275 ) (x) =0 (4.10)
and obey

Je' @) =u'x), W' (x) = w/du (x),

so' (x) = 2'(x) — 0/ 80! (x) + (X + a* () y)dj0 (x),

Ja)R'x) =0,  1w)2'(x) = 2/0;u’ (x),

521 (x) = —/9;2' (x) + 2780 (x) + (X + @ (x) )82 (x), (4.11)

whereu! is any Poisson vector field in Poi).
The equivariant extension of the Poisson differential operatiaidi O# (cf. Section 1},

referred to as Poisson equivariant differential operation in the following, is now easily

worked out. It~is the~ Po'(% operation over FUTTIIT* M)QW(Poig M)) with natural
generators’, X', y;, ¥;, o' (x), £2'(x) satisfying

ja)x' =0, Iw)x' = u'(x), X=X 4+ @ (0)y; + o' (v),

ja) Xt =0, )X = du' (x) X,

sX! = — o (x)f’j — ajwik(x)f(jyk — S?i(x) + ajwi(x)f(j,

J@yi =0, Iy = —du! x)yj,

Sy = Vi + 30% @)y — diwd (0)y;.

JWY; =0, Lw)¥; = —dul (x)¥; — 8;0;u" (x) Xy,

sY; = —%3i3jwkl(x)5ijkyl + 8iwjk(x)yjf/k

+8;2 (0)y; — diw (DY — 890" () Xy, (4.12)

Je' () =u'(x), W' (x) = wdju’ (x),

s (x) = 2'(x) + (X7 + ¥ () y0) 90 (x),

JaR'x) =0,  1w)2'(x) = 270;u’ (x),

521 (x) = £279,0' () + (X7 + a* () )02 (), (4.13)

where again// is any Poisson vector field in Poi#). The Poisson equivariant generators

X!, Y; are related to the Poisson generatst§ Y;* by the simple shifts
X = X" — o' (x), Vi =Y + 80’ (0)y;. (4.14)
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The shifts have a simple formal geometrical interpretation:
lo)x' =o'(x), )y = 8w’ (x)y;. (4.15)

Note that all the Poisson equivariant generatorgzb(vt) are horizontal, i.e. they are anni-
hilated by everyj(u) for all Poisson vector fields' in PoigM).

5. The Hamilton and the Hamilton equivariant operation of ITTM

As discussed irsection 3if M is a Poisson manifold, there is a canonical Lie algebra
homomorphisnp : Fun(M) — Poig M), defined by(3.7), of the Poisson algebra FuW)
into the Poisson vector field Lie algebra Rai§, whose image is the Hamilton vector field
Lie subalgebra Haii1).

The Hamilton differential operation df TM is the pull-back of the Poisson differential
operation of[ITM by the Lie algebra homomorphism(cf. Section 2. It is the FugM)
operation over FUITTIIT* M) with natural generators, X*, y;, Y;* satisfying(4.6) with
j(u), l(w), u' substituted byj(f), I(f), u’f (cf. Eq. (3.7), respectively, for any functionf
of Fun(M). The Hamilton generatos*, Y} are still related to the fundamental generators
X', Y; by (4.7).

Next, we consider the Weil operation of the Lie algebra @dn(cf. Section 2. It is the
Fun(M) operation over the Weil algeb#&(Fun(M)) with natural scalar valued generators
¢, @ satisfying the form of the Weil operation relatio(&s2) appropriate for Fug\). As
in the Poisson case, it turns out to be more efficient to comin@ with the genera-
tors x' to form compositeg(x), ®(x). The Hamilton—Weil generators(x), ®(x) carry
degrees

dego(x) = 1, degd(x) =2 (5.1)

and satisfy

J(Hew) = fx), I(f)ex) =0,
sp(x) = P(x) — 3 (DYP(N)D;p(x) + (X* + Y 1)y g (x),
J(HPx) =0, I(f)P(x) =0,
sP(x) = —o (0)8ip(x)9;D(x) + (X + @V (x)y;)8;P(x) (5.2)
for any functionf in Fun(M).
From the discussion ddection 2 we know that the image by of the Hamilton—Weil

generatorg(x), @(x) equals the image hy” of the'Poisso.n—WeiI generatap$(x), 2/ (x),
respectively. Explicitly, denoting these objects%/(x), 24(x), one has

Wy (x) = —@ (1) (x), () = —@' (0)3;D(x). (5.3)

Using (5.1) and (5.2)it is easy to check thab),(x), 25 (x) fulfill (4.9) and (4.10pnd
satisfy(4.11)with j(u), [(u), u’, &' (x), $2 (x) substituted byi( f), I(f), u’f a)f,)(x), Qi (x),
respectively, for any functionf of Fun(M).
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The equivariant extension of the Hamilton differential operatioff@M (cf. Section 2,
referred to as Hamilton equivariant differential operation below, is now easily obtained. It
is the FuriM) operation over FUATTITT* M)® W(Fun(M)) with natural generators, X’

vi, Yi, ¢(x), ®(x) satisfying(4.12)with j(u), (), u', ' (x), £2'(x) substituted by;j(f),
1(f), u’f a)fb(x), £2i5(x), respectively, and

JNew = f0,  UH$@ =0, '_
s (x) = B(x) + 37" ()3 (x)d;p(x) + (X' + & (x)y)) i (x),
J(HPX) =0, (HPx) =0, sdx) =X + o (x)y)ddx) (5.4)

for any functionf of Fun(M). The Hamilton equivariant generataXs, ¥; are related the
Hamilton generatorsX™, Y* by (4.14) with o'(x), £2'(x) substituted byo;(x), 25 (x),
respectively. Obviouslyp;,(x), 24 (x) satisfy(4.13)with j(u), I(u), u', ©'(x), £2'(x) sub-
stitutiad byji(f), I(f), u’f wfp(x), 24 (x), respectively, for any functiorf of Fun(M), as
usual.

As the above construction is completely local, it works also for the local Hamilton sym-
metry at the price of having multivalued Hamilton—\Weil generatare), @(x). This may
be relevant in the analysis of the implications of the global topology of

6. Thedifferential d

There is an important operator d which enters the construction of the topological observ-
ables of the Poisson sigma model. For the sake of clarity, we shall analyze its properties
separately in this section.

d is the degree-1 derivation on FUITTIIT* M)&W(PoisM)) defined in terms of the
Poisson equivariant generators by

d' = X/, dX’ =0, dy; = ¥;, dy; =0, (6.1)
do'(x) = 2'(x) + X/9;0' (x), d2' (x) = X79;2' (x). (6.2)
The interest of d stems from the fact that it is nilpotent and (anti)commutes with all the
derivations of the Poisson equivariant operatiodIGfM:
[d,d] =0, [d, j(w)] =0, [d,I(w)] =0, [d,s]=0 (6.3)

for any Poisson vectar’ field in Poig M).
d can be defined also in FURTITT* M)® W(Fun(M)) in terms of the Hamilton equiv-
ariant generators by the same relati¢gid) and by

dp(x) = ®(x) + X' 9;0(x), do(x) = X'9;9(x). (6.4)

(6.3) holds also in this case but withu), [(u) replaced byj(f), I(f), for any functionf
in Fun(M). ‘ .
It is easy to check, using@.4), thata)jp(x), 24(x), given by(5.3), satisfy relationg6.2).
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7. Mod d Poisson and Hamilton equivariant classes of TTM

To construct topological observables of the Poisson sigma model, one needs representa-
tives O of mod d Poisson equivariant classes. By definition, any gdighan element of
Fun(ITTIIT* M)® W(Poig M)) satisfying

Jw)O =dO_1(u), ()0 =dOg(u), sO =d0O41 (7.2)
for someO_1(u), Oo(u), O41 in FUNIITIIT* M)® W(Poig M)), for any Poisson vector
u' field in PoigM). An analogous definition holds when restricting to the Hamilton sym-
metry with O, O_1(u), Oo(u), O41 substituted by element8, O_1(f), Oo(f), O41 of
Fun(ITTIIT* M)QW(Fun(M)), for any functionf in Fun(M).

Let jur, Iy anddy, denote the usual differential geometric contraction, Lie derivative and
de Rham differential operators of.

Let gi1i» be anyp-vector, which we representin FUTITT* M)& W(Poig M)) as usual
as

1 i
Blx, y) = — B () iy - i (7.2)
p:
Using(4.12) by a simple calculation, one finds

J@)B(x,y) =0, l(w)B(x, y) =y B(x, y),
sB(x, y) = dB(x, y) — [@, Bl(x, y) + Im(w)B(x, y) (7.3)

for any Poisson vector field in Pois M). If B(x, y) is a representative of a Poisson invariant
Poisson-Lichnerowicz cohomology class, i.e.:

Im)B(x, y) =0, gp(x,y) =0 (7.4)
for any Poisson vector field in Poig M) (cf. Section 3Eq. (3.9), then
J@)p(x, y) =0, I(u)B(x, y) =0, sp(x, y) = dB(x, y) (7.5)

for all with «’ in Poig M). Thus,B(x, y) is a representative of a mod d Poisson equivariant
cohomology class.
Leto;,...;, be anyp-form, which we represent in FUNTIT* M)QW(Poig M)) as

o(x, X) = %O’,‘l...l’p (X1 . X, (7.6)
Using(4.12)again, one finds
juw)o(x, X) =0, lw)o(x, X) = lyw)o(x, X),
so(x, 5() =dpyo(x, 5() + Iy (w)o(x, 5()
—jm(2)o(x, X), +kdyo(x, X) — dk o(x, X) (7.7)

for every Poisson vector field in Poig M), where the operatdris the degree 0 derivation
defined by

kX' = o (xX)y; (7.8)
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and acting trivially on all other Poisson equivariant generators. Therefaréx,ifX) is a
representative of a Poisson basic de Rham cohomology class, i.e.:

ju@o(x, X) =0, Iy w)o(x, X) =0, dyo(x,X) =0 (7.9)
for any Poisson vector field in Poig M), then
jwo(x, X) =0, lw)o(x, X) =0, so(x, X) = —dk o(x, X) (7.10)

for all with «’ in Pois M). Thus,o(x, X) is a representative of a mod d Poisson equivariant
cohomology class.

Demanding invariance or basicity under the Poisson symmetry is very restrictive and in
general only trivial or uninteresting solutions of this requirement are available on a generic
Poisson manifold. So, it is important to see whether restricting to the Hamilton symmetry
yields mod d Hamilton equivariant cohomology classes other than those obtained from
the mod d Poisson equivariant ones via pull-back by the homomorphisfFun(M) —

Poig M) (cf. Section 3.

Consider again g-vectorg1» and viewps(x, y) as an element of FWNTIIT* M)®

W(Fun(M)). Proceeding as i(7.3), one finds

J()Bx, y) =0, (B, y) = ([, B, f1(x, ) — [, [B fII(x, ),

SIB(xv )’) = dﬂ(x’ y) - [w_’ /3] (xv Y) + [[ZD', :3]’ d)] ()C, )’) - [ZD', [:3’ (»b]] ()C, y) (711)
for any functionf in Fun(M). If B(x, y) satisfies

[£Bl(x, ) =0,  gB(x,y) =0 (7.12)

for any function f in Fun(M), and is therefore a representative of a Hamilton invariant
Poisson-Lichnerowicz cohomology class @éction 3Eq. (3.9), then

J(HBx, y) =0, I(f)B(x,y) =0, sp(x, y) = dB(x, ) (7.13)

for all f in Fun(M). Thus, B(x, y) is a representative of a mod d Hamilton equivariant
cohomology class.

Consider again @-form iy, and viewo(x, X) as an element of FWNTIIT* M)&
W(Fun(M)). Proceeding as iv.7)and performing some simple rearrangements, one finds

J(Hox.X) =0,  I(fHowx, X) =djup)ox, X) + juupduo(x, X),

so(x, X) = d(o(x, X) — ho(x, X)) + hdyo(x, X) (7.14)
for every functionf in Fun(M), where the operatdr is the degree 0 derivation defined by

hX' = o' (x)(y; — 9;¢(x)) (7.15)

and acting trivially on all other Hamilton equivariant generatorsdpts defined in(3.7).
Therefore, ifo satisfies the condition ’

kdyo(x, X) =0, (7.16)
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then
J(Pox,X) =0, I(fHox, X) = djuupo, X),
so(x, X) = d(o(x, X) — ho(x, X)) (7.17)

for all £ in Fun(M). Thus,o(x, X) is a representative of a mod d Hamilton equivariant
cohomology class.

8. Poisson and Hamilton action of aLiealgebra

In the analysis of the Poisson sigma model expounded in later sections, it turns out to be
natural to restrict the symmetry Lie algebra to be some finite-dimensional Lie subalgebra
of the Poisson or Hamilton vector field Lie algebras. This can be done efficiently by using
the formalism of Poisson or Hamilton actions hof some abstract finite-dimensional Lie

algebrah.
Leth be a Lie algebra and I¢t,} be a basis ofy. Then:
[ta, tb] = captes (8.1)

cgp being the structure constantsipf

A Poisson (Hamilton) action dfon M is a Lie algebra homomorphism: h — Poig M)
(¢ : b — Fun(M)). Inthe Poisson case(h) is a Lie subalgebra of Pdi&f). Indeed, setting
vl = vi(t,), one has

[va, vp] = cgpve. (8.2)

Similarly, in the Hamilton case;(h) is a Lie subalgebra of Fun). Settinga, = ¢(,),
one has

{ha, hp} = cgphec. (8.3)

The h Poisson (Hamilton) differential operation 6fTM is the pull-back of the Poisson
(Hamilton) differential operation ofITM by the Lie algebra homomorphism (¢) (cf.
Sections 2,4 and)5Hence, itis thé operation over FUTTIIT* M) with natural generators
X', X*, y;, Y satisfying(4.6) with j(u), L(w), u' (j(f), I(f), f) substituted byj(r), {(r),
V' (r) (u, ), respectively, for any elementf h. Theh Poisson (Hamilton) generatoks”,
Y’ are related to the fundamental generaforsy; again by(4.7).

Next, we consider the Weil operation of the Lie algebrécf. Section 2. It is the b
operation over the Weil algebr&(h) with natural generatorg?, I'* dual to the basis
vectorz, of degrees

degy® = 1, deglr* =2 (8.4)
and satisfying

Jny* =r9, I(ny* = —cgcrbyc, sy =T — %cgcyby",

j(rHre =0, 1N = —cf e, s = —cf y'T° (8.5)

with ~ in b.
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From the discussion &ection 2we know that the image hy(¢) of theh Weil generators
y4, I'" equals the image by (¢V) of the Poisson-Weil (Hamilton—Weil) generators
o' (x), 2(x), (p(x), P(x)), respectively. Explicitly, denoting these objectsiiy(x), 2} (x),
(¢, (x), @r(x)), one has

a)g/(x) = Z y”vi(x), .Q}(x) = Z I"”vfl(x), (8.6)

a

<¢y(x) =Y Y'h(),  Pr =) F%(x)) : (8.7)

Using(8.4) and (8.5)it is easy to check tham;',(x), Qir(x)(¢>),(x), @ r(x)) fulfill (4.9) and
(4.10)((5.1) and satisfy(4.11)((5.2) with j(u), [(w), u', &' (x), 2' @) (1), 1(f). £ (@),
@(x)) substituted byj(r), I(r), V' (r), w,, (x), 2(x) (u’g(r), ¢, (x), @r(x)), respectively, for
rinh.

The equivariant extension of tHePoisson (Hamilton) differential operation 61 TM
(cf. Section 2, which we shall cally Poisson (Hamilton) equivariant differential oper-
ation below, is now easily obta[ned. It is tieoperation over FUATTIIT* M)QW(h)
with natural generators’, X', y;, ¥;, y*, I'* satisfying(4.12) with j(w), l(u), u', o' (x),
£2'(x) (GO LU, f g (x), 2,(x)) substituted byj(r), 1(r), v'(r), @), (x), $27(x) (ur,).,
a)fpy(x), Qﬁpr(x)), respectively, ang@8.5), for any element of . Theh Poisson (Hamil-

ton) equivariant generatodg, ¥; are related thg Poisson (Hamilton) generatoks®, Yr
by (4.14)with ' (x), £/ (x) (w;,(x), £24,(x)) substituted byv!, (x), £2}-(x) (a)fz)y (x), Qipr x)
(cf. Eq. (5.3), respectively.

The d operator is defined in obvious fashion:

dy* =19,  dre=o. (8.8)

(6.3)holds with j(u), I(u) substituted byj(r), I(r), respectively, for in .

Representatives of modhdPoisson (Hamilton) equivariant classes are obtained from
those of mod d Poisson and Hamilton equivariant classes discusSectian 7y pull-back
via the Poisson (Hamilton) actian(¢) of h on M.

9. Two-dimensional de Rham superfields and singular superchains

In general, the fields of a two-dimensional field theory are differential forms on a
two-dimensional manifold~. They can be viewed as elements of the space HIY)
of functions on the parity reversed tangent bundie> of X, which we shall call de Rham
superfield46]. More explicitly, we associate to the coordinat&sof >~ Grassmann odd
partnerss® with

degz® =0, dege* =1 (9.1)
and
dz* = ¢%, d¢* =0. (9.2)
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A generic de Rham superfield z, ¢) is a triplet formed by a 0-, 1- and 2-form fieyd? (z),
P @ andl/f;? (z) organized as

Wz, ) = v 0@ + P @) + 375 @) (9.3)
Note that in this formalism, the de Rham differential d>fs simply
a
d=¢"—. 9.4
¢ (9.4)
The coordinate invariant integration measure is
w = dzt dz? det de?. (9.5)

Any de Rham superfield# can be integrated o& according to the prescription:
1
/):Mq/ :/Zédz“ d#y 2 (2). (9.6)
By Stokes’ theorem:
/ wdy = 0. (9.7)
b

The singular chain complex df can be given a parallel treatment. A singular superchain
C is a triplet formed by a zero-, one- and two-dimensional singular ofigin C(1), C(2)
organized as a formal sum:

C=Cp+Cq +Cp. (9.8)

The singular boundary operatdextends to superchains in obvious fashion by setting

(0C) ) = 9C (1), (0C) (1) = 9C(2), (0C)(2) = 0. (9.9
A singular supercycl€ is a superchain such that
9Z = 0. (9.10)
A de Rham superfield’ can be integrated on a superchéin
1
/ pw = f @ / dz? y P (z) + f 5 dz dy s (2). (9.11)
c Co Ca Ce
Stokes’ theorem states that
/C,udlllzfaculll. (9.12)
In particular, ifZ is a supercycle:
/ wdw =0. (9.13)
VA

In the case wher&’ has a non-empty boundagy, the above relations hold provided the
component fields of the superfield obey suitable boundary condiigdns
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10. The b Poisson sigma model

The Poisson Sigma Model is a two-dimensional field theory whose base space is a closed
two-dimensional surfac& and whose target space is a Poisson maniféld

We assume that a finite-dimensional Lie algebris given together with a Hamilton
action ofh on M ¢ : h — Fun(M) (seeSection 7.

The fields of theéh Poisson sigma model are organized in an operation, referred to as the
b Hamilton de Rham superfield operation below. This is a de Rham superfield realization of
theh Hamilton equivariant operation 61 TM and is concretely constructed as follows. Each
of the generators’, X', y;, ¥;, y?, I'® of Fun(ITTIIT* M)QW(h) is realized as a de Rham
superfield, denoted by the same symbol. The vakies ¢), Xi(z, ?), yi(z, ), Yi(z, ©),
y4(z, 0), I'*(z, ¢) of these superfields for varying, ¢) generate, after imposing a natural
smoothness requirement, a formal graded associative alg&€BraV, ). Theh Hamilton
de Rham superfield operation is th@peration ovetF(X, M, ) whose derivationg(r),

I(r), r € b, ands are defined in terms of the de Rham superfield generator¥!, y;,

Y;, y?, I'* of F(X, M, b)) according to expressions formally identical to those valid for
the corresponding generators of RIFTTIT* M)®W(h), as expounded iSection 8 The
derivation d defined i1§6.1) and (8.8)s realized as the de Rham differentialkly. (9.4)

as indicated by the use of the same notation.

A de Rham superfieldi is Hamilton, if A(z, ¢) belongs taF (X, M, ) for all (z, ¢). For
any Hamilton de Rham superfielt], . A is defined and belongs t8(X, M, b).

A Hamilton de Rham superfield is local if A(z, ¢) depends only on the values of the
de Rham superfield generatafs X’, y;, ¥;, ¥4, I'* and a finite number of their derivatives
at(z, ¢). Clearly, each superfield, X', y;, ¥;, %, I'* is Hamilton and local.

If the Hamilton de Rham superfield is a representative of a modydHamilton de Rham
superfield basic cohomology class, thfpu A is a representative of an Hamilton de
Rham superfield basic cohomology class. Indeed(igs, [(r) A, r € b, ands A all vanish
mod d, j(r) [ nA, I(r) [ nA, r € b, ands [y uA, vanish exactly on account (.7).

The crucial observations, which we shall exploit extensively below, are the following.
Every elemen®© of Fun (ITTIIT* M)®W(h) yields a local Hamilton de Rham superfield
of F(X, M, b), denoted also by and called its Hamilton de Rham superfield realization
by substituting each of the generatorsFafn(JTTIIT* M)&W(h) with the corresponding
superfield generator aF(X, M, h). Every relation involving one or more elements in Fun
(ITTIT* M)&W(h) entails a formally identical relation involving their Hamilton de Rham
superfield realizations idF(X, M, ). In particular, representatives of modlh Hamilton
equivariant cohomology classes yield directly local Hamilton de Rham superfields repre-
senting modl h Hamilton de Rham superfield basic cohomology classes

The Lagrangian of thé Poisson sigma model is derived directly from the following
degree 2 element of FUATIIT* M)@W(H)

Ly =yiX' + 370 (0)yiyj — Or). (10.1)
Here,n! is a 2-vector satisfying

[, 7] =0, ie 7 K 4+ 2 gk + 7Ny = 0, (10.2)
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[, w]=0, ie o Blnjk + ol E)mki + wklamij
+7 o + 2 gt + 7MYl = 0. (10.3)
We further demand that the Hamilton actiosatisfies
[7.¢N] =0, ie 7'3;c()=0 (10.4)

with € b. These restrictions on!! and ¢, whose justification will be provided in the
next section, have the following simple geometrical interpretatidnis another Poisson
2-vector ofM compatible with the given Poisson 2-vectol (cf. Eq. (3.1). Thec(r) are
Casimir functions of the Poisson structurewt To avoid possible confusiobelow unless
otherwise statedwe tacitly assume that the Poisson structure of M is that defined by the
Poissor2-vectorza .

Let Cas (M) be the space of functions satisfying

[z f1=0, ie 7'3;f=0. (10.5)

Using (10.3)and the simple relatioff, g} = [/, [, gll, f & € Fun(M), it is easy to show
that Cag (M) a Poisson subalgebra of Fum), the “r-twisted” Casimir subalgebra.

Using the relationy (u s)r = —[[w, f]. 7], f € Fun(M), it is simple to check that,
for fin Cas; (M), Iy (us)m" = 0. Hence, the Poisson 2- vectol is invariant under the
Hamilton vector fields of the-twisted Casimir functions.

From(10.4)and these simple considerations, it follows that,fer b, ¢(r) € Cas, (M)
and that the Poisson 2-vectd is invariant under the Hamilton actiani.e.ly (u ()7 =
0, forr e b.

From here, usingl10.3)and proceeding as iBection 7 we find that’, satisfies

JN Lz =0, l(nNLy =0,
Ly = dyiX' — &r(x) + 37 W)yiy; — 2 Oyiv)) (10.6)

for any element of . Hence,L, is a representative of a mod d degr2dy Hamilton
equivariant conomology class

The treatment of thg Poisson sigma model requires going ontoflrtamilton de Rham
superfield operation. The Lagrangian of the model is the local Hamilton de Rham superfield
realization of£,; and is obtained fron(10.1) using(6.1) and (8.8) The actionS,, of the
model, given as usual b, 1L, thus reads explicitly

1.
Sy = /E m <yi dx’ + En” (X)yiyj — <Ddy(x)) : (10.7)

So,S,; has degree 0 and, [f§0.6)and the above discussion, satisfies
JNSz =0, NSz =0, 58z =0 (10.8)

with r in h. Thus,S; is a representative of a degréd Hamilton de Rham superfield basic
cohomology class

If 71 = @, Cas, (M) = Cag M) on account of3.5) and (10.5)Hence, the Poisson sub-
algebrag(h) is contained in the Casimir subalgebra Qdsand, as the Hamilton vector field
of a Casimir function vanishes identically §9.5) and (3.7)the action of the derivations
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Jj(), I(r) is trivial for all r in b. In this way, the underlyingg Hamilton equivariant coho-
mology of I7TM reduces to ordinary cohomology and, in this sense, is trivialized. When,
converselyr! £ @, Cas (M) # CagM) in general. Therefore, the above argument does
not apply and the action of the derivatiofng), /(r) for r in b is generally non-trivial. In

this way, the) Hamilton equivariant cohomology @f TM is generally non-trivial as well.
The import of this observation has been discussed at the eBeation 1

11. TheBatalin—Vilkoviski formulation of the h Poisson sigma model

The superfield formulation of the Poisson sigma model was developed in order to imple-
ment the Batalin—Vilkoviski quantization algorithfhQ]. It is encouraging to find out that
the actionS,, constructed above satisfies the Batalin—Vilkoviski classical master equation.
Here, we shall use the convenient de Rham superfield formalism. We identify the fields
and antifields withc’ andy;, respectively. The Batalin—Vilkoviski odd symplectic form of
the Poisson sigma model is

Qpv :/ wdxi8y;. (11.1)
x

Note that there is no term corresponding/faand its antifield in the symplectic form, since
these are considered fixed non-dynamical background fields.
Therefore, the Batalin—Vilkoviski antibrackets are given by

&'z, 0. yi@. ) =88z, £: 7. ), (11.2)
where the super delta distributiéns given by
8(z, 02, 8) = 38052 N &P + 85 (2 NP + 3850z P, (11.3)

8P1=P(z; /) being the usual delta distributions for forms &h For a superfield’:
/Z Wz, 82, W, ¢) = Wz, 0). (11.4)

Using(11.2) and (11.4)one verifies that

(Sx, S)= /E n [Zn” ()19 Pay (x) — %(n” oy 4 ) oyt + ﬂklalﬂij)(x)yi)’j)’k] :
(11.5)
Hence the actionS,, satisfies the Batalin—Vilkoviski classical master equation
(Sx. Sy) =0, (11.6)

if (10.2)and(10.4)hold. This analysis provides a field theoretic justification of conditions
(10.2) and (10.4)
The field equations entailed by the actiSpare

del + 7 (0)y; =0, dyi + 39750y — 8iPay (x) = 0. (11.7)
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By applying the differential d to both equations, one obtains the integrability condition
7 (0)8;Pay (x) — (" o + 2 oM+ 7MoYy 0y e = 0. (11.8)

Hencethe field equations are solvablg{0.2)and(10.4)hold. It is interesting to note that
the requirement of integrability of the field equations leads to the same restrictions as those
implied by the master equations.

The Batalin—Vilkoviski variation of the superfields, y; are given by

Srx' = (Sp, x) = dxl + 7 (x)y;,

821 = (Sr. yi) = dy; + 390K (0)y vk — 8 Pay (x). (11.9)
As is well known[10], if the mastelequation (11.6)s fulfilled, 6, is a degree 1 nilpotent
derivation onF (X, M, )

52 =0. (11.10)
From(6.1) and (8.8)it is easy to see that; is nothing but the Hamilton de Rham superfield
realization of a degree 1 derivatian, on FunIITIIT* M)Q@ W(h) defined by

wox' = X' 4 7 X)yj, we X' = —7 (Y — ajnik(x)ff-/yk,

wryi = Yi + %3iﬂjk(x)yj)’k — 0;Pr(x),

wr ¥ = =389, 0 X yeyr + 97 (0)y; Ve + 8:0;Pr (0 X7,

wry? =0, w, " =0. (11.12)

It is straightforward to verify that

[wﬂvwﬂ] :O’ [wn,j(r)] =O’ [wﬂvl(r)] ZO,
[wr,s] =0, [wr,d] =0 (11.12)

forr € b,if (10.2) (10.3)and(10.4)hold. Hence, the compatibility of the nilpotent operator
wy and the derivations of thigHamilton equivariant operation éf TM leads to condition
(10.3)in addition to condition$10.2) and (10.4previously obtained.

12. h Hamilton de Rham superfield basic cohomology classes and
Batalin—Vilkoviski observables

Next, we want to investigate under which conditions local representatiieklamilton
de Rham superfield basic cohomology classes are also Batalin—Vilkoviski observables of
theh Poisson sigma model, i.e. local representatives o thohomology classg40].

Let O be a local Hamilton de Rham superfield f(X, M, h) representing a mod fgl
Hamilton de Rham superfield basic cohomology class. Then, for any singular supetcycle
(cf. Section 10x

(Z,0) = / e (12.1)
Z
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is a representative of @anHamilton de Rham superfield basic cohomology class. Indeed, as
O, 1O, r € b, andsO all vanish mod d,i(r) [, nO, I(r) [, nO, r € b, ands [, nO,
vanish exactly on account ¢9.13)

According to the Batalin—Vilkoviski theory,Z, O) is an observable of thg Poisson
sigma model for all singular supercycl&sprovided

62(Z,0) =0 (12.2)
for all suchZ [10]. This poses further restriction @, namely
3,0 =dXx (12.3)

for some local Hamilton de Rham superfighdn F(X, M, b).

Assume thatO is the Hamilton de Rham superfield realization of some element of
Fun(ITTIIT* M)®W(h), which we also denote bg. Then, on one hand® must obey
(7.1)with j(u), I(u), u' replaced byj(r), [(r), r with r in §. On the other, recalling that,
is the Hamilton de Rham superfield realizationugf (cf. Section 1}, O must satisfy the
further condition

w0 = dX (12.4)

for some element’ of FUNITTIIT* M)®W(h), in analogy to(12.3)
Suppose) = B(x, y) is of the form(7.2). Then,B(x, y) obeys(7.12)with f in ¢(h).
Using(11.11) one computes

wxB(x, y) = dB(x, y) — [, Bl(x, y) + [@r, Bl(x, y). (12.5)
Therefore, imposing that(x, y) satisfieg12.4) we obtain further conditions:
[f£B(x, »] =0, grB(x,y) =0 (12.6)

for all fin c(h), whereg,, is defined by(3.9) with = substituted byr. Note that the first
condition(12.6)coincides with the first conditio(7.12) Whenr! = =", (12.6)reduces
to (7.12)and no further restriction is implied b§12.4) In general, imposing7.12) and
(12.6)simultaneously is rather restrictive and only trivial solutions of these conditions are
available.

Suppose? = o(x, X) is of the form(7.6). Then,o(x, X) obeys(7.16) Using(11.11)
one computes

wro(x, X) = d(o(x, X) — kyo(x, X)) + kpdyo(x, X), (12.7)

wherek; is the degree 0 derivation defined 63:8) with & substituted byr. Therefore,
imposing that(x, X) satisfieg12.4) we get further condition:

kpdyo(x, X) = 0. (12.8)

Whenr!l = w', (12.8)reduces tq7.16)and no further restriction is implied b{12.4)
(7.16) and (12.8are simultaneously solved by all clospeformso;,...;, of M. However,
non-trivial observables are yielded only fpr= 0, 1, 2.
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13. Discussion and examples

In this final section, we illustrate the formal analysis worked out above by providing a
few examples of manifolds/ endowed with a pair of 2-vectors", 7" satisfying(3.1),
(10.2)and(10.3) For convenience, we write the 2-vectdt as

7 =l 4 9l (13.1)

wherevll is a 2-vector satisfyingl0.2) and (10.3With 'l replaced by . Hamilton actions
¢ of afinite-dimensional Lie algebfgon M satisfying(10.4)are most efficiently constructed
as follows. One chooses afinite set of linearly independent functions gt @aand defines
h to be the Lie algebra spanned by these functions under Poisson bracketsgdmett@nes
simply the identity map. In what follows, we follow closely the methodology of Ri].

13.1. Two-dimensional Poisson spaces

Let M be a two-dimensional manifold. We equl with an auxiliary metricg;j. Any
2-vector! can be written as

=g (13.2)
for some functionx, wheree! is the Levi-Civita 2-vector associated gg. Let o, o'
be two 2-vectors and lgt, v be the corresponding functions in the representgtl@n?)

Thenw'l, ¥ automatically are Schouten commuting Poisson 2-vectors, irrespective of the
specific form ofu, v. A function f on M belongs to Cag M), if and only if

(4 v)d; f =0. (13.3)

So, f is constantin the open subsetswfvhere the sum +v is non-vanishing and arbitrary
in the open subsets @ whereu + v vanishes. Sincéf, g} = ue'9; f0,g, Cas (M) is a
generally non-Abelian Poisson subalgebra of (dn

13.2. Three-dimensional Poisson spaces
Let M be a three-dimensional manifold. We equipwith an auxiliary metricgjj. Any
2-vector! can be written as
¢ = oy (13.4)
for some 1-formy;, wheree'® is the Levi-Civita 3-vector associatedgp. Let ", 9 be

two 2-vectors and lgt;, v; be the corresponding 1-forms in the representgti@mw) Then,
@', ¥ are Schouten commuting Poisson 2-vectors, if and only if

K Vi =0, X (wiV vk +viVup) = 0, kv Vv =0, (13.5)

whereV; is the Riemannian connection gf. It is known that the first and third condition
have the local solution

Wi = ud;p, v; = v0;q, (13.6)
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whereu, v, p, g are certain local functiond.9]. The remaining condition can then be cast
as

el ; In (%) 8;pdg = 0. (13.7)
A function f on M belongs to Cag M), if and only if

X (u+v) o f =0, (13.8)
or, on account 0f13.6}

X udip +vd;q)d f = 0. (13.9)

By (13.8) if the 1-formu + v vanishes at most in the complement of an open dense set,
then, at least locallyy; f = k¢(u + v); for some functiork. In that case, as it easy to
see from the relatiofif. g} = €% 4;3; fdrg, Cas, (M) is an Abelian Poisson subalgebra of
Fun(M). For instance, one may consider = R2 equipped with the Schouten commuting
Poisson 2-vectorarl, 9 corresponding to the compatible Poisson structures:

{x1, x2} = x3, {x2, x3} = x1, {x3, x1} = x2, (13.10)
x1,x2bp = 3 — (x3+ 3% {x2.x3}p =0,  {x3,x1}s =0. (13.11)

The resulting Poisson 2-vectat! appears in the Poisson sigma model describing two-
dimensional EuclideaR? gravity with cosmological constaft]. A solution ofEq. (13.8)
is

flx1, x2, x3) = 362 +13) — Txa(x - 3). (13.12)

As another example, one may conside= R? x S with the Schouten commuting Poisson
2-vectorsw!, 9 defined by the compatible Poisson structures:

{x1,x2} =0, {x1,¢} =0, {x2, ¢} = P(x1, x2), (13.13)

{x1, x2}» =0, {x1, o}y = —Q(x1, x2), {x2, ¢}» =0, (13.14)
whereP(x1, x2), Q(x1, x2) are certain functions In this cadeq. (13.8)reduces to

P(x1, x2)0x, f—Q(x1, X2)3x, f = 0, P(x1,x2)0p f = Q(x1, x2)9, f = 0. (13.15)
Inthe generic situationd, f = 0 and the firstequation can be treated with standard analytical
techniques.
13.3. Four-dimensional Poisson spaces

Let M be a four-dimensional manifold. We equip with an auxiliary metricgjj. Any

2-vectors! can be written as

= %eijklakl (13.16)

for some 2-formu;j, wheree™ is the Levi-Civita 4-vector associated gg. Let o',
be two 2-vectors and lgtjj, vj be the corresponding 2-forms in the representgtl@n16)
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Then,w', ¥ are Schouten commuting Poisson 2-vectors, if and only if

ejklm EJklm

wik Vitmi = 0, Ejklm(,ujkVWmi + vk Vismi) = 0, Vik Vivmi = 0,

(13.17)

where agairV; is the Riemannian connection gf. If one restricts oneself to degenerate
Poisson 2-vectors, i.e. with everywhere vanishing determinant, it is known that the first and
third condition have the local solution:

wij = u(d;pdjq — 9;pdiq), vij = v(0;79;s — 9;r9;$), (13.18)

whereu, v, p, q, r, s are certain local functiond9]. The remaining condition can then be
cast as

ejk'm[uajpakq(E)erl(UaiS) — 0 sV (vo;r))

+ 00783, pVi(udiq) — 3,gV(ud;p))] = 0. (13.19)
A function f on M belongs to Cag M), if and only if
M +v)kd f =0, (13.20)
or, on account 0f13.18)
e (ud; porg + vdrdgs)a f = 0. (13.21)

There is not much that can be said in general on the solution of this equation. As an example,
one can conside¥ = R3 x R equipped with the Schouten commuting Poisson 2-vectors
@, 9 corresponding to the compatible Poisson structures:

3
{xi, xj} = Zsiijky, {xi, ¥y} =0, (13.22)
k=1
3
{xi,xj}p =0, i b = Y eilaj — ar)xjxi, (13.23)
k=1

wheregijk is three-dimensional totally antisymmetric symbol anddhthe real numbers.
The resulting Poisson 2-vectat! is that of the famous Sklyanin Poisson struct{2@)].
Eq. (13.20)s solved by

3 3
1 1 1
f1(x1, x2, X3, y) = > E > a,-xiz — ZyZ’ fa(x1, x2,x3,y) = > E > xiz. (13.24)
= 1=

f» is a common Casimir function of both!!l and®! and so is not of any use.

13.4. Affine Lie—Poisson spaces

Lie—Poisson spaces appear in the Poisson sigma model describing two-dimensional
Yang-Mills theory[4]. An interesting generalization is provided by the so-called affine
Lie—Poisson spacd$7]. As an example, we considéf = R” with the 2-vectors

@ (x) = czxk, 9 (x) = dY, (13.25)
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where the constantg, o satisfy
cl e K ke m'+c cl I _ 0, (13.26)
ij _mk jk _mi ki mj _ 2
@+ opa +cpa 0. (13.27)

Asiswell-known(13.26) and (13.2&tate thaR"" is a Lie algebra with structure constants
¢} and thatd! is a Chevalley—Eilenberg 2-cocycle &f". ', 91 are Schouten commut-

ing Poisson 2-vectorso! is usually called Kirillov—Kostant—Souriau Poisson structure
[21-23] A function f on M belongs to Cag M), if and only if

() +dya;f=o0. (13.28)
An example is provided by/ = R* with the Poisson structures defined by

{x0, xi} = xj41, 1<i=<3, {x;,x;}=0, 1<ij=<3, (13.29)

{x0, xi}p = adi1, 1<i<3, {xi,xj}s =0, 1<i,j<3 (13.30)
wherea is a real number angs = 0 by convention. A solution of13.28)is given by

f(xo, X1, x2, x3) = (x1x3 — 3(x2 + @)?)g(x3), (13.31)
whereg is an arbitrary function.
13.5. Compact Poisson Riemannian symmetric spaces

Let M be a compact Riemannian symmetric space with mgjrid hen, ifojj, 7j are two

harmonic 2-forms:

ol =g¥gloy, 91 =gl (13.32)

are Schouten commuting Poisson 2-vecfbr§. Of course, this example is to be considered
trivial unless the Betti numbén (M) > 2.
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