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Abstract

We study a formulation of the standard Poisson sigma model in which the target space Poisson
manifold carries the Hamilton action of some finite-dimensional Lie algebra. We show that the
structure of the action and the properties of the gauge invariant observables can be understood in
terms of the associated target space equivariant cohomology. We use a de Rham superfield formalism
to efficiently explore the implications of the Batalin–Vilkoviski master equation.
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1. Introduction

A Poisson manifold is a manifold equipped with a Poisson structure. The Poisson sigma
model associates to any Poisson manifold a two-dimensional sigma model having the Pois-
son manifold as target space[1–3]. By means of suitable choices of the Poisson structure,
it is possible to reproduce a wealth of interesting models, such as two-dimensionalR2

gravity, two-dimensional gauge theory and two-dimensional Wess–Zumino–Witten model
(see Ref.[4] for a clear review). More recently, Kontsevich’s formulation of deformation
quantization of the algebra of functions on a Poisson manifold[5] has been interpreted in
terms of the perturbation theory of the corresponding quantum Poisson sigma model on the
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two-dimensional disk[6–9]. This universality and versatility of the Poisson sigma model
justifies the large body of literature devoted to its study.

In many respects, the Poisson sigma model is a gauge theory whose symmetry is based
on a Poisson algebra. This makes it interesting, but it also poses a number of new prob-
lems, especially at the quantum level, due to the singularity of the kinetic terms and the
nonlinearity of the symmetry. In this respect, the Batalin–Vilkoviski quantization algorithm
[10] is essential for achieving a consistent quantization[6,9]. We feel that a more thorough
investigation of the geometry of the model is desirable to reach a better handle on these
issues.

It is often stated that the Poisson sigma model is a kind of topological field theory. The
known topological field theories are divided into two broad classes, those of Schwartz
or metric independent type, such as the three-dimensional Chern–Simons theory and the
two-dimensional BF theory, and those of Witten or cohomological type, such as supersym-
metric quantum mechanics and the Donaldson–Witten theory (see[11,12] for a detailed
treatment of these models and exhaustive referencing). The Poisson sigma model does not
seem to fall in either of them. However, we have found that, when the target space Poisson
manifold carries the Hamilton action of some finite-dimensional Lie algebra, as it happens
in virtually all the most interesting examples, it has a hidden equivariant cohomological
structure, that makes it akin to the cohomological theories and determines to a considerable
degree the structure of the action and the properties of the gauge invariant observables. The
present paper is devoted to the study of this matter.

Our analysis relies to a great extent on an abstract algebraic framework, called operation,
whose main properties are reviewed inSection 2. Briefly, ag operation overZ consists of
a Lie algebrag, a graded associative algebraZ and a set of derivationsj(ξ), l(ξ), ξ ∈ g,
ands onZ of degrees−1, 0,+1, respectively, satisfying the graded commutation relations
(1.1). Everyg operation overZ admits a canonicalg equivariant extension. There are three
cohomologies associated with the nilpotent derivations: ordinary,g basic andg equivariant.

The elements of our construction are provided by the rich geometry of Poisson manifolds,
whose basic facts are reviewed inSection 3. The main geometric datum of a Poisson
manifoldM is a 2-vector� ij , satisfying the Poisson condition(2.1), in terms of which
the Poisson brackets{, } on the algebra of functions onM are defined. The Lie algebra of
Poisson vector fields ofM is the symmetry Lie algebra of the Poisson structure ofM and
thus plays an essential role. In applications, however, it is often natural to restrict oneself
to the Lie subalgebra of Hamilton vector fields.

When a Poisson manifoldM carries the Poisson or Hamilton action of some Lie algebra
h, one can define anh operation over the space of functions of the superbundleΠTΠT ∗M
and itsh equivariant extension.ΠTΠT ∗M allows for a natural unified description of the
inducedh action on multivectors and forms ofM. This construction is expounded in detail
in Sections 4–8.

Forms on a two-dimensional manifoldΣ can be viewed as elements of the space of
functions on superbundleΠTΣ, which we shall call de Rham superfields. This formalism,
which is illustrated inSection 9, turns out to be elegant and convenient.

One can construct a de Rham superfield realization of theh equivariant operation over
ΠTΠT ∗M simply by promoting each of its generatorsxi,yi,γa, etc. to a de Rham superfield.
This leads to anh operation over a formal graded associative algebra of superfields, referred
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to ashHamilton de Rham superfield operation. Theh basic cohomology of this is intimately
related to theh equivariant cohomology ofΠTΠT ∗M. Although obvious, this fact lies at
the heart of our analysis of the Poisson sigma model, expounded inSections 10–12, which
we now outline briefly.

Consider a Poisson manifoldM with Poisson 2-vector� ij carrying the Hamilton action
of some finite-dimensional Lie algebrah. Let ha be the functions ofM corresponding via
the action to fiducial generatorsta of h with structure constantsccab, so that

{ha, hb} = ccabhc. (1.1)

Finally, letπij be a 2-vector ofM. The action of the Poisson sigma model is

Sπ =
∫
Σ

µ

(
yi dxi + 1

2
πij (x)yiyj − dγaha(x)

)
, (1.2)

wherexi, yi, γa are generators of theh Hamilton de Rham superfield operation andµ the
integration supermeasure ofΣ.Sπ satisfies the Batalin–Vilkoviski classical master equation
if πij is a Poisson 2-vector and if

πij∂jha = 0. (1.3)

So,πij defines another Poisson structure onM with respect to which the functionsha are
Casimir (cf.Eq. (2.5)). However, we stress that, when we refer toM as a Poisson manifold,
the underlying Poisson structure implied is that associated to� ij . The crucial result is

j(r)Sπ = 0, l(r)Sπ = 0, sSπ = 0 (1.4)

for r ∈ h, if πij Schouten commutes with� ij . Eq. (1.4)then states thatSπ is a representative
of a degree 0h basic cohomology class of Hamilton de Rham superfield operation. The
Batalin–Vilkoviski nilpotent variationδπ and the derivationsj(r), l(r) ands (anti)commute.
Thus, the Batalin–Vilkoviski cohomology and theh basic Hamilton de Rham superfield
cohomology are compatible.

Whenπij = � ij theh equivariant cohomology ofΠTΠT ∗M degenerates in the ordinary
one, because, by(1.3), the Hamilton action is given through Casimir functions and thus is
trivial. Correspondingly, theh basic Hamilton de Rham superfield cohomology reduces to
the Batalin–Vilkoviski cohomology.

This is not as disappointing as it may seem at first sight. It often happens that a complicated
Poisson 2-vectorπij can be written as

πij = � ij + ϑij , (1.5)

where� ij is a well understood Poisson 2-vector andϑij another Poisson 2-vector Schouten
commuting with� ij . One can then viewπij as a perturbation of� ij and try to understand the
πij Poisson sigma model as a perturbation of the� ij Poisson sigma model. There are plenty
of such examples, such as theR2 gravity Poisson sigma model and the affine Lie–Poisson
sigma model. More examples are illustrated inSection 13.

All known topological field theories of cohomological type are characterized by a Lie
groupG, a space of fieldsP carrying a rightG action, a certainG operation overP and
an actionS that is a representative of a degree 0G basic or equivariant cohomology class
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of P [13]. Apparently, the Poisson sigma model has a very similar structure. The analogy,
however, stops here. In the topological field theories of cohomological type, the groupG is
infinite-dimensional and the actionS is a Mathai–Quillen representative of the Thom class
of some vector bundleE overP/G and describes localization on the zero locus of certain
sections ofE [14,15]. So far, a similar interpretation does not seem to be possible for the
version of the Poisson sigma model studied in this paper.

2. Generalities on basic and equivariant cohomology

Our analysis of the Poisson sigma model is based on a formal algebraic framework,
called operation, whose main properties we shall now review (see Ref.[16] for background
material).

A g operation overZ is a quintuplet(Z, g, j, l, s), whereg is a Lie algebra,Z a graded
associative algebra andj(ξ), l(ξ), ξ ∈ g, ands the graded derivations onZ of degree−1, 0,
+1, respectively, satisfying Cartan’s algebra:

[j(ξ), j(η)] = 0, [l(ξ), j(η)] = j([ξ, η]), [l(ξ), l(η)] = l([ξ, η]),

[s, j(η)] = l(η), [s, l(η)] = 0, [s, s] = 0, (2.1)

where the above are graded commutators. In all examples considered below, the graded
algebraZ is finitely generated. So, the graded derivationsj(ξ), l(ξ) ands are completely
defined by their action on a suitable set of natural generators.

Sinces2 = 0, one can define the cohomology of the differential complex(Z, s). This
is called ordinary cohomology ofZ. More importantly, one may consider the differential
complex(Zbasic, s), whereZbasic is thes invariant subalgebra ofZ annihilated by allj(ξ),
l(ξ), ξ ∈ g. The corresponding cohomology is referred to asg basic cohomology ofZ.

To any Lie algebrag, there is canonically associated the Weil operation(W(g), g, j, l, s).
Here,W(g) = A(g∨) ⊗ S(g∨), whereA(g∨) andS(g∨) are the antisymmetric, symmetric
algebras ofg∨, respectively. The naturalg-valued generatorsω, Ω of W(g) carry degrees
1, 2, respectively, and satisfy

j(ξ)ω = ξ, j(ξ)Ω = 0, l(ξ)ω = −[ξ, ω], l(ξ)Ω = −[ξ,Ω],

sω = Ω − 1
2[ω,ω], sΩ = −[ω,Ω]. (2.2)

The cohomology ofW(g) is trivial. Theg basic cohomology ofW(g) is isomorphic to the
adg invariant subalgebra ofS(g∨).

For a given operation(Z, g, j, l, s), one can construct the operation(Z⊗̂W(g), g, j, l, s),
where⊗̂ denotes graded tensor product.(Z⊗̂W(g), g, j, l, s) is called equivariant extension
of (Z, g, j, l, s). Theg basic cohomology ofZ⊗̂W(g) is calledg equivariant cohomology
of Z. Representatives ofg equivariant cohomology classes ofZ in Z⊗̂W(g) yield repre-
sentatives ofg basic cohomology classes ofZ by replacing the Weil generatorsω, Ω, by
a connectiona, A of Z, i.e. a pair of elementsa, A of Z ⊗ g of degree 1, 2, respectively,
satisfying(2.2)with ω, Ω replaced bya, A (Weil homomorphism).
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A homomorphism of the operation(Z, g, j, l, s) into the operation(Z′, g′, j′, l′, s′) is a
pair(f, µ), wheref : Z → Z′ is a degree zero graded algebra homomorphism,µ : g′ → g
is a Lie algebra homomorphism and

j′(ξ′) ◦ f = f ◦ j(µ(ξ′)), l′(ξ′) ◦ f = f ◦ l(µ(ξ′)), s′ ◦ f = f ◦ s (2.3)

with ξ′ ∈ g′. Clearly,(f, µ) induces a homomorphism of theg basic cohomology ofZ into
theg′ basic cohomology ofZ′.

If µ : g′ → g is a Lie algebra homomorphism, then the pair(µ∨, µ) is a homomorphism
of the Weil operation ofg (W(g), g, j, l, s) into the Weil operation ofg′ (W(g′), g′, j′, l′, s′),
whereµ∨ denotes the natural extension toW(g) of the dual linear homomorphismµ∨ :
g∨ → g′∨. The generatorsω, Ω, ω′, Ω′ of W(g), W(g′), respectively, obey the important
relations

µ∨(ω) = µ(ω′), µ∨(Ω) = µ(Ω′). (2.4)

By combining these identities with(2.3) with f = µ∨, we find that the action ofj′(ξ′),
l′(ξ′). ξ′ ∈ g′ ands′ onµ(ω′), µ(Ω′) is obtained from that ofj(µ(ξ′)), l(µ(ξ′)) ands onω,
Ω, Eq. (2.2), by applyingµ∨.

If (f, µ) is a homomorphism of the operations(Z, g, j, l, s), (Z′, g′, j′, l′, s′), (f ⊗̂µ∨, µ)
is a homomorphism of the corresponding equivariant extensions(Z⊗̂W(g), g, j, l, s),
(Z′⊗̂W(g′), g′, j′, l′, s′) and induces a homomorphism of theg equivariant cohomology
of Z into theg′ equivariant cohomology ofZ′.

If (Z, g, j, l, s) is an operation andµ : g′ → g is a Lie algebra homomorphism, we can
define a new operation(Z, g′, j′, l′, s′) by setting

j′(ξ′) = j(µ(ξ′)), l′(ξ′) = l(µ(ξ′)), s′ = s (2.5)

with ξ′ ∈ g. (Z, g′, j′, l′, s′) is called pull-back of(Z, g, j, l, s) by µ. In the particular
case whereg′ is a Lie subalgebra ofg andµ the natural inclusion,(Z, g′, j′, l′, s′) is called
restriction of(Z, g, j, l, s) tog′. (idZ,µ) is a homomorphism of the operations(Z, g, j, l, s),
(Z, g′, j′, l′, s′), which induces an injection of theg basic cohomology into theg′ basic
cohomology ofZ. Similarly,(idZ⊗̂µ∨, µ) is a homomorphism of the associated equivariant
extensions(Z⊗̂W(g), g, j, l, s), (Z⊗̂W(g′), g′, j′, l′, s′), which induces a homomorphism
of theg equivariant cohomology into theg′ equivariant cohomology ofZ.

A wide class of operations is built as follows. Consider: (i) a Lie groupG with Lie
algebra LieG; (ii) a principalG bundleπP : P → M. DefineZ = Ω∗(P), g = LieG,
j(ξ) = jP(Cξ), l(ξ) = lP(Cξ), for ξ ∈ g, ands = dP, whereΩ∗(P) is the graded algebra
of differential forms ofP, jP, lP anddP the customary differential geometric contraction,
Lie derivative and de Rham differential operators, respectively, andCξ the vertical vector
field corresponding toξ. The resulting quintuplet(Z, g, j, l, s) is an operation. It basic
cohomology is isomorphic to the de Rham cohomology of the baseM.

Typically, in cohomological topological quantum field theory,G is a gauge group,P a
supermanifold of gauge and matter fields propagating on a space–time manifoldX andM
some sort of gauge orbit or moduli space[11,12]. Representatives of equivariant classes,
known as topological observables, play an important role, since they yield via the Weil
homomorphism forms onM, which can be used to probe its structure. They are obtained
by integrating on cycles ofX certain differential forms ofX built with the fields. One is
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thus interested in mod d equivariant classes, where d is the Rham differential ofX. This
leads to the well-known descent formalism[18].

3. Generalities on Poisson manifolds

The target space of the Poisson sigma model is a Poisson manifold. We shall now briefly
review the properties of Poisson manifolds relevant in the following discussion (see Ref.
[17] for background material).

By definition, a manifoldM is Poisson if it is equipped with a 2-vector� ij satisfying the
relation

[�,�] = 0, i.e. � il∂l�
jk + � jl∂l�

ki + �kl∂l�
ij = 0. (3.1)

Here and below, [·, ·] denotes the Schouten brackets, the only natural pairing of multivectors
defined on any manifold.

On a Poisson manifold, one can define Poisson brackets of (local) functionsf , g

{f, g} = � ij∂if∂jg. (3.2)

On account of(3.1), one indeed has

{f, g} + {g, f } = 0, (3.3)

{f, {g, h}} + {g, {h, f }} + {h, {f, g}} = 0. (3.4)

In this way, the space of functions Fun(M) becomes a Lie algebra, the Poisson algebra of
M.

Functionsf satisfying

[�,f ] = 0, i.e. � ij∂jf = 0 (3.5)

are called Casimir functions. Suchf Poisson commute with any functiong: {f, g} = 0. So,
they form the center Cas(M) of Fun(M).

Vector fieldsui such that

[�,u] = 0, i.e. uk∂k�
ij − ∂ku

i�kj − ∂ku
j� ik = 0 (3.6)

are called Poisson vector fields. Suchui are precisely the vector fields leaving� ij invariant,
since(3.6) states thatlM(u)� ij = 0, lM(u) being the usual Lie derivative. The Poisson
vector fieldsui of the form

uf = −[�,f ], i.e. uif = −� ij∂jf (3.7)

for some functionf are called Hamilton vector fields.
The Poisson vector fields span a Lie subalgebra Pois(M) of the Lie algebra Vect(M) of

the vector fields ofM. The Poisson vector fields are the natural symmetry Lie algebra of a
Poisson manifold and of the associated geometrical structures. The Hamilton vector fields
form a Lie subalgebra Ham(M) of Pois(M) as

[uf , ug] = u{f,g} (3.8)
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for any two functionsf , g. So,(3.7) establishes a canonical surjective Lie algebra homo-
morphism Fun(M) → Ham(M) with kernel Cas(M).

On a Poisson manifold, one can define a natural degree+1 operator acting on a general
p-vectorζi1···ip :

qζ = [�, ζ]. (3.9)

Using(3.1), it is easy to verify that

q2 = 0. (3.10)

Hence, a Poisson manifold has a natural notion of cohomology, called Poisson–Lichnerowicz
cohomology. Since

[q, lM(u)] = 0 (3.11)

for any Poisson vector fieldui, one can define a Poisson (Hamilton) invariant Poisson–
Lichnerowicz cohomology by restrictingq to the complex of multivectorsζi1···ip such that
lM(u)ζi1···ip = 0 for all Poisson vector fieldsui (lM(uf )ζ

i1···ip = 0 for all functionsf ).
The 0 Poisson–Lichnerowicz cocycles are the Casimir functions and span the zeroth

Poisson–Lichnerowicz cohomology. The 1 Poisson–Lichnerowicz cocycles are the Poisson
vector fields, the 1 Poisson–Lichnerowicz coboundaries are the Hamilton vector fields. So,
the first Poisson–Lichnerowicz cohomology is the quotient of the Poisson by the Hamilton
vector field spaces. It is possible to show that the second Poisson–Lichnerowicz cohomology
describes the space of the infinitesimal deformationβij of the Poisson 2-vector� ij modulo
the deformations of the formlM(u)� ij for some vector fieldui.

4. The Poisson and the Poisson equivariant operation of ΠTM

We are now going to construct the operations relevant in the following analysis. For a
given Poisson manifoldM, all these areH operations over the graded associative algebra
Fun(ΠTΠT ∗M) of functions of the superbundleΠTΠT ∗M, or its equivariant extension
Fun(ΠTΠT ∗M)⊗̂W(H), whereH is some relevant Lie subalgebra of Vect(M) andΠ the
fiber parity inversion functor. Further, they all have a natural set of generatorsxi, X1i, yi,
Y
1
i with the following degree assignments:

degxi = 0, degX1i = 1, degyi = 1, degY1
i = 2 (4.1)

and transformation properties under a change of local coordinatest → t′:

x′i = t′i(x), X1′i = ∂t′i

∂tj
(x)X1j, y′

i = ∂tj

∂t′i
(x)yj,

Y
1′
i = ∂tj

∂t′i
(x)Y

1
j +

(
∂2tj

∂t′i∂t′k
∂t′k

∂tl

)
(x)X1lyj. (4.2)

There are canonical injections of the spaces ofp-vectors andp-forms ofM into the graded al-
gebra Fun(ΠTΠT ∗M)or its equivariant extension Fun(ΠTΠT ∗M)⊗̂W(H). To anyp-vector
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βi1···ip , one associates

β(x, y) = 1

p!
βi1···ip(x)yi1 · · · yip . (4.3)

Similarly, to anyp-form σi1···ip , one associates

σ(x,X1) = 1

p!
σi1···ip(x)X

1i1 · · ·X1ip . (4.4)

These representations are very convenient and will be used throughout.
The fundamental differential operation ofΠTM is defined independently from any dif-

ferential geometric structure onM. It is the Vect(M) operation over Fun(ΠTΠT ∗M) with
natural generatorsxi, Xi, yi, Yi obeying

j(u)xi = 0, l(u)xi = ui(x), sxi = Xi,

j(u)Xi = ui(x), l(u)Xi = ∂ju
i(x)Xj, sXi = 0,

j(u)yi = 0, l(u)yi = −∂iu
j(x)yj, syi = Yi,

j(u)Yi = −∂iu
j(x)yj, l(u)Yi = −∂iu

j(x)Yj − ∂i∂ju
k(x)Xjyk, sYi = 0

(4.5)

with ui any vector field in Vect(M).
If M is a Poisson manifold with Poisson 2-vector� ij , the natural symmetry Lie algebra

is the subalgebra of Vect(M) leaving� ij invariant, i.e. the Poisson Lie algebra Pois(M)

(cf. Section 3). The Poisson differential operation ofΠTM is obtained by restricting the
fundamental differential operation ofΠTM to Pois(M) (cf. Section 2). It is the Pois(M)

operation over Fun(ΠTΠT ∗M) with natural generatorsxi, X∗i, yi, Y∗
i obeying

j(u)xi = 0, l(u)xi = ui(x), sxi = X∗i + � ij (x)yj,

j(u)X∗i = ui(x), l(u)X∗i = ∂ju
i(x)X∗j, sX∗i = −� ij (x)Y∗

j − ∂j�
ik(x)X∗jyk,

j(u)yi = 0, l(u)yi = −∂iu
j(x)yj, syi = Y∗

i + 1
2∂i�

jk(x)yjyk,

j(u)Y∗
i = −∂iu

j(x)yj, l(u)Y∗
i = −∂iu

j(x)Y∗
j − ∂i∂ju

k(x)X∗jyk,

sY∗
i = −1

2∂i∂j�
kl(x)X∗jykyl + ∂i�

jk(x)yjY
∗
k , (4.6)

where nowui is any Poisson vector field in Pois(M) (cf. Eq. (3.6)). The Poisson generators
X∗i, Y∗

i are related to the fundamental generatorsXi, Yi by the simple shifts

X∗i = Xi − � ij (x)yj, Y∗
i = Yi − 1

2∂i�
jk(x)yjyk. (4.7)

Such shifts have a simple geometrical interpretation:

qxi = −� ij (x)yj, qyi = −1
2∂i�

jk(x)yjyk, (4.8)

whereq is defined in(3.9).
Next, we consider the Weil operation of the Lie algebra Pois(M) (cf. Section 2). It is

the Pois(M) operation over the Weil algebraW(Pois(M)) with natural Poisson vector field
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valued generatorsωi,Ωi satisfying the form of the Weil operation relations(2.2)appropriate
for Pois(M). It turns out to be more efficient to combineωi, Ωi with the generatorsxi to
form compositesωi(x), Ωi(x), by replacing the dummy local coordinatesti appearing in
the local expressionωi(t),Ωi(t) of ωi,Ωi by xi. The Poisson–Weil generatorsωi(x),Ωi(x)

carry degrees:

degωi(x) = 1, degΩi(x) = 2 (4.9)

by being Poisson vector fields satisfy

(ωk∂k�
ij − ∂kω

i�kj − ∂kω
j� ik)(x) = 0,

(Ωk∂k�
ij − ∂kΩ

i�kj − ∂kΩ
j� ik)(x) = 0 (4.10)

and obey

j(u)ωi(x) = ui(x), l(u)ωi(x) = ωj∂ju
i(x),

sωi(x) = Ωi(x) − ωj∂jω
i(x) + (X∗j + � jk(x)yk)∂jω

i(x),

j(u)Ωi(x) = 0, l(u)Ωi(x) = Ωj∂ju
i(x),

sΩi(x) = −ωj∂jΩ
i(x) + Ωj∂jω

i(x) + (X∗j + � jk(x)yk)∂jΩ
i(x), (4.11)

whereui is any Poisson vector field in Pois(M).
The equivariant extension of the Poisson differential operation ofΠTM (cf. Section 1),

referred to as Poisson equivariant differential operation in the following, is now easily
worked out. It is the Pois(M) operation over Fun(ΠTΠT ∗M)⊗̂W(Pois(M)) with natural
generatorsxi, X̃i, yi, Ỹi, ωi(x), Ωi(x) satisfying

j(u)xi = 0, l(u)xi = ui(x), sxi = X̃i + � ij (x)yj + ωi(x),

j(u)X̃i = 0, l(u)X̃i = ∂ju
i(x)X̃j,

sX̃i = −� ij (x)Ỹj − ∂j�
ik(x)X̃jyk − Ωi(x) + ∂jω

i(x)X̃j,

j(u)yi = 0, l(u)yi = −∂iu
j(x)yj,

syi = Ỹi + 1
2∂i�

jk(x)yjyk − ∂iω
j(x)yj,

j(u)Ỹi = 0, l(u)Ỹi = −∂iu
j(x)Ỹj − ∂i∂ju

k(x)X̃jyk,

sỸi = −1
2∂i∂j�

kl(x)X̃jykyl + ∂i�
jk(x)yjỸk

+∂iΩ
j(x)yj − ∂iω

j(x)Ỹj − ∂i∂jω
k(x)X̃jyk, (4.12)

j(u)ωi(x) = ui(x), l(u)ωi(x) = ωj∂ju
i(x),

sωi(x) = Ωi(x) + (X̃j + � jk(x)yk)∂jω
i(x),

j(u)Ωi(x) = 0, l(u)Ωi(x) = Ωj∂ju
i(x),

sΩi(x) = Ωj∂jω
i(x) + (X̃j + � jk(x)yk)∂jΩ

i(x), (4.13)

where againui is any Poisson vector field in Pois(M). The Poisson equivariant generators
X̃i, Ỹi are related to the Poisson generatorsX∗i, Y∗

i by the simple shifts

X̃i = X∗i − ωi(x), Ỹi = Y∗
i + ∂iω

j(x)yj. (4.14)
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The shifts have a simple formal geometrical interpretation:

l(ω)xi = ωi(x), l(ω)yi = −∂iω
j(x)yj. (4.15)

Note that all the Poisson equivariant generators butωi(x) are horizontal, i.e. they are anni-
hilated by everyj(u) for all Poisson vector fieldsui in Pois(M).

5. The Hamilton and the Hamilton equivariant operation of ΠTM

As discussed inSection 3, if M is a Poisson manifold, there is a canonical Lie algebra
homomorphism4 : Fun(M) → Pois(M), defined by(3.7), of the Poisson algebra Fun(M)

into the Poisson vector field Lie algebra Pois(M), whose image is the Hamilton vector field
Lie subalgebra Ham(M).

The Hamilton differential operation ofΠTM is the pull-back of the Poisson differential
operation ofΠTM by the Lie algebra homomorphism4 (cf. Section 2). It is the Fun(M)

operation over Fun(ΠTΠT ∗M) with natural generatorsxi, X∗i, yi, Y∗
i satisfying(4.6)with

j(u), l(u), ui substituted byj(f ), l(f ), uif (cf. Eq. (3.7)), respectively, for any functionf

of Fun(M). The Hamilton generatorsX∗i, Y∗
i are still related to the fundamental generators

Xi, Yi by (4.7).
Next, we consider the Weil operation of the Lie algebra Fun(M) (cf. Section 2). It is the

Fun(M) operation over the Weil algebraW(Fun(M)) with natural scalar valued generators
φ, Φ satisfying the form of the Weil operation relations(2.2) appropriate for Fun(M). As
in the Poisson case, it turns out to be more efficient to combineφ, Φ with the genera-
tors xi to form compositesφ(x), Φ(x). The Hamilton–Weil generatorsφ(x), Φ(x) carry
degrees

degφ(x) = 1, degΦ(x) = 2 (5.1)

and satisfy

j(f )φ(x) = f(x), l(f )φ(x) = 0,

sφ(x) = Φ(x) − 1
2�

ij (x)∂iφ(x)∂jφ(x) + (X∗i + � ij (x)yj)∂iφ(x),

j(f )Φ(x) = 0, l(f )Φ(x) = 0,

sΦ(x) = −� ij (x)∂iφ(x)∂jΦ(x) + (X∗i + � ij (x)yj)∂iΦ(x) (5.2)

for any functionf in Fun(M).
From the discussion ofSection 2, we know that the image by4 of the Hamilton–Weil

generatorsφ(x),Φ(x) equals the image by4∨ of the Poisson–Weil generatorsωi(x),Ωi(x),
respectively. Explicitly, denoting these objects byωi

φ(x), Ω
i
Φ(x), one has

ωi
φ(x) = −� ij (x)∂jφ(x), Ωi

Φ(x) = −� ij (x)∂jΦ(x). (5.3)

Using (5.1) and (5.2), it is easy to check thatωi
φ(x), Ω

i
Φ(x) fulfill (4.9) and (4.10)and

satisfy(4.11)with j(u), l(u), ui,ωi(x),Ωi(x) substituted byj(f ), l(f ), uif ,ωi
φ(x),Ω

i
Φ(x),

respectively, for any functionf of Fun(M).
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The equivariant extension of the Hamilton differential operation ofΠTM (cf. Section 2),
referred to as Hamilton equivariant differential operation below, is now easily obtained. It
is the Fun(M) operation over Fun(ΠTΠT ∗M)⊗̂W(Fun(M)) with natural generatorsxi, X̃i,
yi, Ỹi, φ(x), Φ(x) satisfying(4.12)with j(u), l(u), ui, ωi(x), Ωi(x) substituted byj(f ),
l(f ), uif , ωi

φ(x), Ω
i
Φ(x), respectively, and

j(f )φ(x) = f(x), l(f )φ(x) = 0,

sφ(x) = Φ(x) + 1
2�

ij (x)∂iφ(x)∂jφ(x) + (X̃i + � ij (x)yj)∂iφ(x),

j(f )Φ(x) = 0, l(f )Φ(x) = 0, sΦ(x) = (X̃i + � ij (x)yj)∂iΦ(x) (5.4)

for any functionf of Fun(M). The Hamilton equivariant generatorsX̃i, Ỹi are related the
Hamilton generatorsX∗i, Y∗

i by (4.14) with ωi(x), Ωi(x) substituted byωi
φ(x), Ω

i
Φ(x),

respectively. Obviously,ωi
φ(x), Ω

i
Φ(x) satisfy(4.13)with j(u), l(u), ui, ωi(x), Ωi(x) sub-

stituted byj(f ), l(f ), uif , ωi
φ(x), Ω

i
Φ(x), respectively, for any functionf of Fun(M), as

usual.
As the above construction is completely local, it works also for the local Hamilton sym-

metry at the price of having multivalued Hamilton–Weil generatorsφ(x), Φ(x). This may
be relevant in the analysis of the implications of the global topology ofM.

6. The differential d

There is an important operator d which enters the construction of the topological observ-
ables of the Poisson sigma model. For the sake of clarity, we shall analyze its properties
separately in this section.

d is the degree+1 derivation on Fun(ΠTΠT ∗M)⊗̂W(Pois(M)) defined in terms of the
Poisson equivariant generators by

dxi = X̃i, dX̃i = 0, dyi = Ỹi, dỸi = 0, (6.1)

dωi(x) = Ωi(x) + X̃j∂jω
i(x), dΩi(x) = X̃j∂jΩ

i(x). (6.2)

The interest of d stems from the fact that it is nilpotent and (anti)commutes with all the
derivations of the Poisson equivariant operation ofΠTM:

[d,d] = 0, [d, j(u)] = 0, [d, l(u)] = 0, [d, s] = 0 (6.3)

for any Poisson vectorui field in Pois(M).
d can be defined also in Fun(ΠTΠT ∗M)⊗̂W(Fun(M)) in terms of the Hamilton equiv-

ariant generators by the same relations(6.1)and by

dφ(x) = Φ(x) + X̃i∂iφ(x), dΦ(x) = X̃i∂iΦ(x). (6.4)

(6.3)holds also in this case but withj(u), l(u) replaced byj(f ), l(f ), for any functionf
in Fun(M).

It is easy to check, using(6.4), thatωi
φ(x), Ω

i
Φ(x), given by(5.3), satisfy relations(6.2).
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7. Mod d Poisson and Hamilton equivariant classes of ΠTM

To construct topological observables of the Poisson sigma model, one needs representa-
tivesO of mod d Poisson equivariant classes. By definition, any suchO is an element of
Fun(ΠTΠT ∗M)⊗̂W(Pois(M)) satisfying

j(u)O = dO−1(u), l(u)O = dO0(u), sO = dO+1 (7.1)

for someO−1(u), O0(u), O+1 in Fun(ΠTΠT ∗M)⊗̂W(Pois(M)), for any Poisson vector
ui field in Pois(M). An analogous definition holds when restricting to the Hamilton sym-
metry withO, O−1(u), O0(u), O+1 substituted by elementsO, O−1(f ), O0(f ), O+1 of
Fun(ΠTΠT ∗M)⊗̂W(Fun(M)), for any functionf in Fun(M).

Let jM , lM anddM denote the usual differential geometric contraction, Lie derivative and
de Rham differential operators ofM.

Letβi1···ip be anyp-vector, which we represent in Fun(ΠTΠT ∗M)⊗̂W(Pois(M)) as usual
as

β(x, y) = 1

p!
βi1···ip(x)yi1 · · · yip . (7.2)

Using(4.12), by a simple calculation, one finds

j(u)β(x, y) = 0, l(u)β(x, y) = lM(u)β(x, y),

sβ(x, y) = dβ(x, y) − [�,β](x, y) + lM(ω)β(x, y) (7.3)

for any Poisson vector fieldui in Pois(M). If β(x, y) is a representative of a Poisson invariant
Poisson–Lichnerowicz cohomology class, i.e.:

lM(u)β(x, y) = 0, qβ(x, y) = 0 (7.4)

for any Poisson vector fieldui in Pois(M) (cf. Section 3, Eq. (3.9)), then

j(u)β(x, y) = 0, l(u)β(x, y) = 0, sβ(x, y) = dβ(x, y) (7.5)

for all with ui in Pois(M). Thus,β(x, y) is a representative of a mod d Poisson equivariant
cohomology class.

Let σi1···ip be anyp-form, which we represent in Fun(ΠTΠT ∗M)⊗̂W(Pois(M)) as

σ(x, X̃) = 1

p!
σi1···ip(x)X̃

i1 · · · X̃ip . (7.6)

Using(4.12)again, one finds

j(u)σ(x, X̃) = 0, l(u)σ(x, X̃) = lM(u)σ(x, X̃),

sσ(x, X̃) = dMσ(x, X̃) + lM(ω)σ(x, X̃)

−jM(Ω)σ(x, X̃),+kdMσ(x, X̃) − dk σ(x, X̃) (7.7)

for every Poisson vector fieldui in Pois(M), where the operatork is the degree 0 derivation
defined by

kX̃i = � ij (x)yj (7.8)
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and acting trivially on all other Poisson equivariant generators. Therefore, ifσ(x, X̃) is a
representative of a Poisson basic de Rham cohomology class, i.e.:

jM(u)σ(x, X̃) = 0, lM(u)σ(x, X̃) = 0, dMσ(x, X̃) = 0 (7.9)

for any Poisson vector fieldui in Pois(M), then

j(u)σ(x, X̃) = 0, l(u)σ(x, X̃) = 0, sσ(x, X̃) = −dk σ(x, X̃) (7.10)

for all with ui in Pois(M). Thus,σ(x, X̃) is a representative of a mod d Poisson equivariant
cohomology class.

Demanding invariance or basicity under the Poisson symmetry is very restrictive and in
general only trivial or uninteresting solutions of this requirement are available on a generic
Poisson manifold. So, it is important to see whether restricting to the Hamilton symmetry
yields mod d Hamilton equivariant cohomology classes other than those obtained from
the mod d Poisson equivariant ones via pull-back by the homomorphism4 : Fun(M) →
Pois(M) (cf. Section 4).

Consider again ap-vectorβi1···ip and viewβ(x, y) as an element of Fun(ΠTΠT ∗M)⊗̂
W(Fun(M)). Proceeding as in(7.3), one finds

j(f )β(x, y) = 0, l(f )β(x, y) = [[�,β], f ](x, y) − [�, [β, f ]](x, y),

sβ(x, y) = dβ(x, y) − [�,β](x, y) + [[�,β], φ](x, y) − [�, [β, φ]](x, y) (7.11)

for any functionf in Fun(M). If β(x, y) satisfies

[f, β](x, y) = 0, qβ(x, y) = 0 (7.12)

for any functionf in Fun(M), and is therefore a representative of a Hamilton invariant
Poisson–Lichnerowicz cohomology class (cf.Section 3, Eq. (3.9)), then

j(f )β(x, y) = 0, l(f )β(x, y) = 0, sβ(x, y) = dβ(x, y) (7.13)

for all f in Fun(M). Thus,β(x, y) is a representative of a mod d Hamilton equivariant
cohomology class.

Consider again ap-form σi1···ip and viewσ(x, X̃) as an element of Fun(ΠTΠT ∗M)⊗̂
W(Fun(M)). Proceeding as in(7.7)and performing some simple rearrangements, one finds

j(f )σ(x, X̃) = 0, l(f )σ(x, X̃) = djM(uf )σ(x, X̃) + jM(uf )dMσ(x, X̃),

sσ(x, X̃) = d(σ(x, X̃) − hσ(x, X̃)) + hdMσ(x, X̃) (7.14)

for every functionf in Fun(M), where the operatorh is the degree 0 derivation defined by

hX̃i = � ij (x)(yj − ∂jφ(x)) (7.15)

and acting trivially on all other Hamilton equivariant generators anduif is defined in(3.7).
Therefore, ifσ satisfies the condition

kdMσ(x, X̃) = 0, (7.16)
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then

j(f )σ(x, X̃) = 0, l(f )σ(x, X̃) = djM(uf )σ(x, X̃),

sσ(x, X̃) = d(σ(x, X̃) − hσ(x, X̃)) (7.17)

for all f in Fun(M). Thus,σ(x, X̃) is a representative of a mod d Hamilton equivariant
cohomology class.

8. Poisson and Hamilton action of a Lie algebra h

In the analysis of the Poisson sigma model expounded in later sections, it turns out to be
natural to restrict the symmetry Lie algebra to be some finite-dimensional Lie subalgebra
of the Poisson or Hamilton vector field Lie algebras. This can be done efficiently by using
the formalism of Poisson or Hamilton actions onM of some abstract finite-dimensional Lie
algebrah.

Let h be a Lie algebra and let{ta} be a basis ofh. Then:

[ta, tb] = ccabtc, (8.1)

ccab being the structure constants ofh.
A Poisson (Hamilton) action ofh onM is a Lie algebra homomorphismυ : h→ Pois(M)

(ς : h→ Fun(M)). In the Poisson case,υ(h) is a Lie subalgebra of Pois(M). Indeed, setting
via = υi(ta), one has

[va, vb] = ccabvc. (8.2)

Similarly, in the Hamilton case,ς(h) is a Lie subalgebra of Fun(M). Settingha = ς(ta),
one has

{ha, hb} = ccabhc. (8.3)

The h Poisson (Hamilton) differential operation ofΠTM is the pull-back of the Poisson
(Hamilton) differential operation ofΠTM by the Lie algebra homomorphismυ (ς) (cf.
Sections 2, 4 and 5). Hence, it is thehoperation over Fun(ΠTΠT ∗M)with natural generators
xi, X∗i, yi, Y∗

i satisfying(4.6) with j(u), l(u), ui (j(f ), l(f ), f ) substituted byj(r), l(r),
υi(r) (uiς(r)), respectively, for any elementr of h. Theh Poisson (Hamilton) generatorsX∗i,
Y∗
i are related to the fundamental generatorsXi, Yi again by(4.7).
Next, we consider the Weil operation of the Lie algebrah (cf. Section 2). It is the h

operation over the Weil algebraW(h) with natural generatorsγa, Γ a dual to the basis
vectorta of degrees

degγa = 1, degΓ a = 2 (8.4)

and satisfying

j(r)γa = ra, l(r)γa = −cabcr
bγc, sγa = Γ a − 1

2c
a
bcγ

bγc,

j(r)Γ a = 0, l(r)Γ a = −cabcr
bΓ c, sΓ a = −cabcγ

bΓ c (8.5)

with r in h.
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From the discussion ofSection 2, we know that the image byυ (ς) of thehWeil generators
γa, Γ a equals the image byυ∨ (ς∨) of the Poisson–Weil (Hamilton–Weil) generators
ωi(x),Ωi(x), (φ(x),Φ(x)), respectively. Explicitly, denoting these objects byωi

γ(x),Ω
i
Γ (x),

(φγ(x), ΦΓ (x)), one has

ωi
γ(x) =

∑
a

γavia(x), Ωi
Γ (x) =

∑
a

Γ avia(x), (8.6)

(
φγ(x) =

∑
a

γaha(x), ΦΓ (x) =
∑
a

Γ aha(x)

)
. (8.7)

Using(8.4) and (8.5), it is easy to check thatωi
γ(x), Ω

i
Γ (x)(φγ(x),ΦΓ (x)) fulfill (4.9) and

(4.10)((5.1)) and satisfy(4.11)((5.2)) with j(u), l(u), ui,ωi(x),Ωi(x)(j(f ), l(f ), f, φ(x),

Φ(x)) substituted byj(r), l(r), υi(r), ωi
γ(x), Ω

i
Γ (x)(u

i
ς(r), φγ(x),ΦΓ (x)), respectively, for

r in h.
The equivariant extension of theh Poisson (Hamilton) differential operation ofΠTM

(cf. Section 2), which we shall callh Poisson (Hamilton) equivariant differential oper-
ation below, is now easily obtained. It is theh operation over Fun(ΠTΠT ∗M)⊗̂W(h)
with natural generatorsxi, X̃i, yi, Ỹi, γa, Γ a satisfying(4.12), with j(u), l(u), ui, ωi(x),
Ωi(x) (j(f ), l(f ), f, ωi

φ(x),Ω
i
Φ(x)) substituted byj(r), l(r), υi(r), ωi

γ(x), Ω
i
Γ (x)(u

i
ς(r),

ωi
φγ
(x),Ωi

ΦΓ
(x)), respectively, and(8.5), for any elementr of h. Theh Poisson (Hamil-

ton) equivariant generators̃Xi, Ỹi are related theh Poisson (Hamilton) generatorsX∗i, Y∗
i

by (4.14)with ωi(x),Ωi(x)(ωi
φ(x),Ω

i
Φ(x)) substituted byωi

γ(x),Ω
i
Γ (x)(ω

i
φγ
(x),Ωi

ΦΓ
(x))

(cf. Eq. (5.3)), respectively.
The d operator is defined in obvious fashion:

dγa = Γ a, dΓ a = 0. (8.8)

(6.3)holds withj(u), l(u) substituted byj(r), l(r), respectively, forr in h.
Representatives of mod dh Poisson (Hamilton) equivariant classes are obtained from

those of mod d Poisson and Hamilton equivariant classes discussed inSection 7by pull-back
via the Poisson (Hamilton) actionυ(ς) of h onM.

9. Two-dimensional de Rham superfields and singular superchains

In general, the fields of a two-dimensional field theory are differential forms on a
two-dimensional manifoldΣ. They can be viewed as elements of the space Fun(ΠTΣ)

of functions on the parity reversed tangent bundleΠTΣ of Σ, which we shall call de Rham
superfields[6]. More explicitly, we associate to the coordinateszα of Σ Grassmann odd
partnersζα with

degzα = 0, degζα = 1 (9.1)

and

dzα = ζα, dζα = 0. (9.2)
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A generic de Rham superfieldΨ(z, ζ) is a triplet formed by a 0-, 1- and 2-form fieldψ(0)(z),
ψ

(1)
α (z) andψ(2)

αβ (z) organized as

Ψ(z, ζ) = ψ(0)(z) + ζαψ(1)
α (z) + 1

2ζ
αζβψ

(2)
αβ (z). (9.3)

Note that in this formalism, the de Rham differential d ofΣ is simply

d = ζα
∂

∂zα
. (9.4)

The coordinate invariant integration measure is

µ = dz1 dz2 dζ1 dζ2. (9.5)

Any de Rham superfieldΨ can be integrated onΣ according to the prescription:∫
Σ

µΨ =
∫
Σ

1

2
dzα dzβψ(2)

αβ (z). (9.6)

By Stokes’ theorem:∫
Σ

µdΨ = 0. (9.7)

The singular chain complex ofΣ can be given a parallel treatment. A singular superchain
C is a triplet formed by a zero-, one- and two-dimensional singular chainC(0), C(1), C(2)
organized as a formal sum:

C = C(0) + C(1) + C(2). (9.8)

The singular boundary operator∂ extends to superchains in obvious fashion by setting

(∂C)(0) = ∂C(1), (∂C)(1) = ∂C(2), (∂C)(2) = 0. (9.9)

A singular supercycleZ is a superchain such that

∂Z = 0. (9.10)

A de Rham superfieldΨ can be integrated on a superchainC:∫
C

µΨ =
∫
C(0)

ψ(0) +
∫
C(1)

dzα ψ(1)
α (z) +

∫
C(2)

1

2
dzα dzβψ(2)

αβ (z). (9.11)

Stokes’ theorem states that∫
C

µdΨ =
∫
∂C

µΨ. (9.12)

In particular, ifZ is a supercycle:∫
Z

µdΨ = 0. (9.13)

In the case whereΣ has a non-empty boundary∂Σ, the above relations hold provided the
component fields of the superfield obey suitable boundary conditions[6].
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10. The h Poisson sigma model

The Poisson Sigma Model is a two-dimensional field theory whose base space is a closed
two-dimensional surfaceΣ and whose target space is a Poisson manifoldM.

We assume that a finite-dimensional Lie algebrah is given together with a Hamilton
action ofh onM ς : h→ Fun(M) (seeSection 7).

The fields of theh Poisson sigma model are organized in an operation, referred to as the
hHamilton de Rham superfield operation below. This is a de Rham superfield realization of
thehHamilton equivariant operation ofΠTMand is concretely constructed as follows. Each
of the generatorsxi, X̃i, yi, Ỹi, γa, Γ a of Fun(ΠTΠT ∗M)⊗̂W(h) is realized as a de Rham
superfield, denoted by the same symbol. The valuesxi(z, ζ), X̃i(z, ζ), yi(z, ζ), Ỹi(z, ζ),
γa(z, ζ), Γ a(z, ζ) of these superfields for varying(z, ζ) generate, after imposing a natural
smoothness requirement, a formal graded associative algebraF(Σ,M, h). Theh Hamilton
de Rham superfield operation is theh operation overF(Σ,M, h) whose derivationsj(r),
l(r), r ∈ h, ands are defined in terms of the de Rham superfield generatorsxi, X̃i, yi,
Ỹi, γa, Γ a of F(Σ,M, h) according to expressions formally identical to those valid for
the corresponding generators of Fun(ΠTΠT ∗M)⊗̂W(h), as expounded inSection 8. The
derivation d defined in(6.1) and (8.8)is realized as the de Rham differential d,Eq. (9.4),
as indicated by the use of the same notation.

A de Rham superfieldΛ is Hamilton, ifΛ(z, ζ) belongs toF(Σ,M, h) for all (z, ζ). For
any Hamilton de Rham superfieldΛ,

∫
Σ
µΛ is defined and belongs toF(Σ,M, h).

A Hamilton de Rham superfieldΛ is local if Λ(z, ζ) depends only on the values of the
de Rham superfield generatorsxi, X̃i, yi, Ỹi, γa, Γ a and a finite number of their derivatives
at (z, ζ). Clearly, each superfieldxi, X̃i, yi, Ỹi, γa, Γ a is Hamilton and local.

If the Hamilton de Rham superfieldΛ is a representative of a mod dhHamilton de Rham
superfield basic cohomology class, then

∫
Σ
µΛ is a representative of anh Hamilton de

Rham superfield basic cohomology class. Indeed, asj(r)Λ, l(r)Λ, r ∈ h, andsΛ all vanish
mod d,j(r)

∫
Σ
µΛ, l(r)

∫
Σ
µΛ, r ∈ h, ands

∫
Σ
µΛ, vanish exactly on account of(9.7).

The crucial observations, which we shall exploit extensively below, are the following.
Every elementO of Fun (ΠTΠT ∗M)⊗̂W(h) yields a local Hamilton de Rham superfield
ofF(Σ,M, h), denoted also byO and called its Hamilton de Rham superfield realization,
by substituting each of the generators ofFun(ΠTΠT ∗M)⊗̂W(h) with the corresponding
superfield generator ofF(Σ,M, h). Every relation involving one or more elements in Fun
(ΠTΠT ∗M)⊗̂W(h) entails a formally identical relation involving their Hamilton de Rham
superfield realizations inF(Σ,M, h). In particular, representatives of moddh Hamilton
equivariant cohomology classes yield directly local Hamilton de Rham superfields repre-
senting moddh Hamilton de Rham superfield basic cohomology classes.

The Lagrangian of theh Poisson sigma model is derived directly from the following
degree 2 element of Fun(ΠTΠT ∗M)⊗̂W(h)

Lπ = yiX̃
i + 1

2π
ij (x)yiyj − ΦΓ (x). (10.1)

Here,πij is a 2-vector satisfying

[π, π] = 0, i.e. πil∂lπ
jk + πjl∂lπ

ki + πkl∂lπ
ij = 0, (10.2)
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[π,�] = 0, i.e. � il∂lπ
jk + � jl∂lπ

ki + �kl∂lπ
ij

+πil∂l�
jk + πjl∂l�

ki + πkl∂l�
ij = 0. (10.3)

We further demand that the Hamilton actionς satisfies

[π, ς(r)] = 0, i.e. πij∂jς(r) = 0 (10.4)

with r ∈ h. These restrictions onπij andς, whose justification will be provided in the
next section, have the following simple geometrical interpretation.πij is another Poisson
2-vector ofM compatible with the given Poisson 2-vector� ij (cf. Eq. (3.1)). Theς(r) are
Casimir functions of the Poisson structure ofπij . To avoid possible confusion,below, unless
otherwise stated, we tacitly assume that the Poisson structure of M is that defined by the
Poisson2-vector� ij .

Let Casπ(M) be the space of functionsf satisfying

[π, f ] = 0, i.e. πij∂jf = 0. (10.5)

Using(10.3)and the simple relation{f, g} = [f, [�, g]], f, g ∈ Fun(M), it is easy to show
that Casπ(M) a Poisson subalgebra of Fun(M), the “π-twisted” Casimir subalgebra.

Using the relationlM(uf )π = −[[�,f ], π], f ∈ Fun(M), it is simple to check that,
for f in Casπ(M), lM(uf )π

ij = 0. Hence, the Poisson 2-vectorπij is invariant under the
Hamilton vector fields of theπ-twisted Casimir functions.

From(10.4)and these simple considerations, it follows that, forr ∈ h, ς(r) ∈ Casπ(M)

and that the Poisson 2-vectorπij is invariant under the Hamilton actionς, i.e.lM(uς(r))π
ij =

0, for r ∈ h.
From here, using(10.3)and proceeding as inSection 7, we find thatLπ satisfies

j(r)Lπ = 0, l(r)Lπ = 0,

sLπ = d(yiX̃
i − ΦΓ (x) + 1

2π
ij (x)yiyj − 1

2�
ij (x)yiyj) (10.6)

for any elementr of h. Hence,Lπ is a representative of a mod d degree2 h Hamilton
equivariant cohomology class.

The treatment of thehPoisson sigma model requires going onto thehHamilton de Rham
superfield operation. The Lagrangian of the model is the local Hamilton de Rham superfield
realization ofLπ and is obtained from(10.1)using(6.1) and (8.8). The actionSπ of the
model, given as usual by

∫
Σ
µLπ, thus reads explicitly

Sπ =
∫
Σ

µ

(
yi dxi + 1

2
πij (x)yiyj − Φdγ(x)

)
. (10.7)

So,Sπ has degree 0 and, by(10.6)and the above discussion, satisfies

j(r)Sπ = 0, l(r)Sπ = 0, sSπ = 0 (10.8)

with r in h. Thus,Sπ is a representative of a degree0 h Hamilton de Rham superfield basic
cohomology class.

If πij = � ij , Casπ(M) = Cas(M) on account of(3.5) and (10.5). Hence, the Poisson sub-
algebraς(h) is contained in the Casimir subalgebra Cas(M)and, as the Hamilton vector field
of a Casimir function vanishes identically by(3.5) and (3.7), the action of the derivations
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j(r), l(r) is trivial for all r in h. In this way, the underlyingh Hamilton equivariant coho-
mology ofΠTM reduces to ordinary cohomology and, in this sense, is trivialized. When,
conversely,πij �= � ij , Casπ(M) �= Cas(M) in general. Therefore, the above argument does
not apply and the action of the derivationsj(r), l(r) for r in h is generally non-trivial. In
this way, theh Hamilton equivariant cohomology ofΠTM is generally non-trivial as well.
The import of this observation has been discussed at the end ofSection 1.

11. The Batalin–Vilkoviski formulation of the h Poisson sigma model

The superfield formulation of the Poisson sigma model was developed in order to imple-
ment the Batalin–Vilkoviski quantization algorithm[10]. It is encouraging to find out that
the actionSπ constructed above satisfies the Batalin–Vilkoviski classical master equation.

Here, we shall use the convenient de Rham superfield formalism. We identify the fields
and antifields withxi andyi, respectively. The Batalin–Vilkoviski odd symplectic form of
the Poisson sigma model is

Ω̂BV =
∫
Σ

µδxiδyi. (11.1)

Note that there is no term corresponding toγa and its antifield in the symplectic form, since
these are considered fixed non-dynamical background fields.

Therefore, the Batalin–Vilkoviski antibrackets are given by

(xi(z, ζ), yi(z
′, ζ′)) = δijδ(z, ζ; z′, ζ′), (11.2)

where the super delta distributionδ is given by

δ(z, ζ; z′, ζ′) = 1
2δ

0,2
α′β′(z; z′)ζα

′
ζβ

′ + δ
1,1
αβ′(z; z′)ζαζβ

′ + 1
2δ

2,0
αβ (z; z′)ζαζβ, (11.3)

δp,1−p(z; z′) being the usual delta distributions for forms onΣ. For a superfieldΨ :∫
Σ

µ′δ(z, ζ; z′, ζ′)Ψ(z′, ζ′) = Ψ(z, ζ). (11.4)

Using(11.2) and (11.4), one verifies that

(Sπ,Sπ)=
∫
Σ

µ

[
2πij (x)yi∂jΦdγ(x) − 1

3
(πil∂lπ

jk + πjl∂lπ
ki + πkl∂lπ

ij )(x)yiyjyk

]
.

(11.5)

Hence,the actionSπ satisfies the Batalin–Vilkoviski classical master equation:

(Sπ,Sπ) = 0, (11.6)

if (10.2)and(10.4)hold. This analysis provides a field theoretic justification of conditions
(10.2) and (10.4).

The field equations entailed by the actionSπ are

dxi + πij (x)yj = 0, dyi + 1
2∂iπ

jk(x)yjyk − ∂iΦdγ(x) = 0. (11.7)
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By applying the differential d to both equations, one obtains the integrability condition

πij (x)∂jΦdγ(x) − 1
2(π

il∂lπ
jk + πjl∂lπ

ki + πkl∂lπ
ij )(x)yjyk = 0. (11.8)

Hence,the field equations are solvable if(10.2)and(10.4)hold. It is interesting to note that
the requirement of integrability of the field equations leads to the same restrictions as those
implied by the master equations.

The Batalin–Vilkoviski variation of the superfieldsxi, yi are given by

δπx
i = (Sπ, x

i) = dxi + πij (x)yj,

δπyi = (Sπ, yi) = dyi + 1
2∂iπ

jk(x)yjyk − ∂iΦdγ(x). (11.9)

As is well known[10], if the masterequation (11.6)is fulfilled, δπ is a degree 1 nilpotent
derivation onF(Σ,M, h)

δ2
π = 0. (11.10)

From(6.1) and (8.8), it is easy to see thatδπ is nothing but the Hamilton de Rham superfield
realization of a degree 1 derivationwπ on Fun(ΠTΠT ∗M)⊗̂W(h) defined by

wπx
i = X̃i + πij (x)yj, wπX̃

i = −πij (x)Ỹj − ∂jπ
ik(x)X̃jyk,

wπyi = Ỹi + 1
2∂iπ

jk(x)yjyk − ∂iΦΓ (x),

wπỸi = −1
2∂i∂jπ

kl(x)X̃jykyl + ∂iπ
jk(x)yjỸk + ∂i∂jΦΓ (x)X̃

j,

wπγ
a = 0, wπΓ

a = 0. (11.11)

It is straightforward to verify that

[wπ,wπ] = 0, [wπ, j(r)] = 0, [wπ, l(r)] = 0,

[wπ, s] = 0, [wπ, d] = 0 (11.12)

for r ∈ h, if (10.2), (10.3)and(10.4)hold. Hence, the compatibility of the nilpotent operator
wπ and the derivations of theh Hamilton equivariant operation ofΠTM leads to condition
(10.3)in addition to conditions(10.2) and (10.4)previously obtained.

12. h Hamilton de Rham superfield basic cohomology classes and
Batalin–Vilkoviski observables

Next, we want to investigate under which conditions local representatives ofh Hamilton
de Rham superfield basic cohomology classes are also Batalin–Vilkoviski observables of
theh Poisson sigma model, i.e. local representatives of theδπ cohomology classes[10].

Let O be a local Hamilton de Rham superfield inF(Σ,M, h) representing a mod dh
Hamilton de Rham superfield basic cohomology class. Then, for any singular supercycleZ

(cf. Section 10):

〈Z,O〉 =
∫
Z

µO (12.1)
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is a representative of anhHamilton de Rham superfield basic cohomology class. Indeed, as
j(r)O, l(r)O, r ∈ h, andsO all vanish mod d,j(r)

∫
Z
µO, l(r)

∫
Z
µO, r ∈ h, ands

∫
Z
µO,

vanish exactly on account of(9.13).
According to the Batalin–Vilkoviski theory,〈Z,O〉 is an observable of theh Poisson

sigma model for all singular supercyclesZ, provided

δπ〈Z,O〉 = 0 (12.2)

for all suchZ [10]. This poses further restriction onO, namely

δπO = dX (12.3)

for some local Hamilton de Rham superfieldX in F(Σ,M, h).
Assume thatO is the Hamilton de Rham superfield realization of some element of

Fun(ΠTΠT ∗M)⊗̂W(h), which we also denote byO. Then, on one handO must obey
(7.1)with j(u), l(u), ui replaced byj(r), l(r), r with r in h. On the other, recalling thatδπ
is the Hamilton de Rham superfield realization ofwπ (cf. Section 11), O must satisfy the
further condition

wπO = dX (12.4)

for some elementX of Fun(ΠTΠT ∗M)⊗̂W(h), in analogy to(12.3).
SupposeO = β(x, y) is of the form(7.2). Then,β(x, y) obeys(7.12)with f in ς(h).

Using(11.11), one computes

wπβ(x, y) = dβ(x, y) − [π, β](x, y) + [ΦΓ , β](x, y). (12.5)

Therefore, imposing thatβ(x, y) satisfies(12.4), we obtain further conditions:

[f, β(x, y)] = 0, qπβ(x, y) = 0 (12.6)

for all f in ς(h), whereqπ is defined by(3.9)with � substituted byπ. Note that the first
condition(12.6)coincides with the first condition(7.12). Whenπij = � ij , (12.6)reduces
to (7.12)and no further restriction is implied by(12.4). In general, imposing(7.12) and
(12.6)simultaneously is rather restrictive and only trivial solutions of these conditions are
available.

SupposeO = σ(x, X̃) is of the form(7.6). Then,σ(x, X̃) obeys(7.16). Using(11.11),
one computes

wπσ(x, X̃) = d(σ(x, X̃) − kπσ(x, X̃)) + kπdMσ(x, X̃), (12.7)

wherekπ is the degree 0 derivation defined by(7.8) with � substituted byπ. Therefore,
imposing thatσ(x, X̃) satisfies(12.4), we get further condition:

kπdMσ(x, X̃) = 0. (12.8)

Whenπij = � ij , (12.8) reduces to(7.16)and no further restriction is implied by(12.4).
(7.16) and (12.8)are simultaneously solved by all closedp-formsσi1···ip of M. However,
non-trivial observables are yielded only forp = 0,1,2.
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13. Discussion and examples

In this final section, we illustrate the formal analysis worked out above by providing a
few examples of manifoldsM endowed with a pair of 2-vectors� ij , πij satisfying(3.1),
(10.2)and(10.3). For convenience, we write the 2-vectorπij as

πij = � ij + ϑij , (13.1)

whereϑij is a 2-vector satisfying(10.2) and (10.3)withπij replaced byϑij . Hamilton actions
ς of a finite-dimensional Lie algebrahonM satisfying(10.4)are most efficiently constructed
as follows. One chooses a finite set of linearly independent functions of Casπ(M)and defines
h to be the Lie algebra spanned by these functions under Poisson brackets, so thatς becomes
simply the identity map. In what follows, we follow closely the methodology of Ref.[19].

13.1. Two-dimensional Poisson spaces

Let M be a two-dimensional manifold. We equipM with an auxiliary metricgij . Any
2-vectorζij can be written as

ζij = εijα (13.2)

for some functionα, whereεij is the Levi–Civita 2-vector associated togij . Let � ij , ϑij

be two 2-vectors and letµ, ν be the corresponding functions in the representation(13.2).
Then� ij , ϑij automatically are Schouten commuting Poisson 2-vectors, irrespective of the
specific form ofµ, ν. A functionf onM belongs to Casπ(M), if and only if

(µ + ν)∂if = 0. (13.3)

So,f is constant in the open subsets ofM where the sumµ+ν is non-vanishing and arbitrary
in the open subsets ofM whereµ + ν vanishes. Since{f, g} = µεij∂if∂jg, Casπ(M) is a
generally non-Abelian Poisson subalgebra of Fun(M).

13.2. Three-dimensional Poisson spaces

Let M be a three-dimensional manifold. We equipM with an auxiliary metricgij . Any
2-vectorζij can be written as

ζij = εijkαk (13.4)

for some 1-formαi, whereεijk is the Levi–Civita 3-vector associated togij . Let� ij , ϑij be
two 2-vectors and letµi, νi be the corresponding 1-forms in the representation(13.4). Then,
� ij , ϑij are Schouten commuting Poisson 2-vectors, if and only if

εijkµi∇jµk = 0, εijk(µi∇jνk + νi∇jµk) = 0, εijkνi∇jνk = 0, (13.5)

where∇i is the Riemannian connection ofgij . It is known that the first and third condition
have the local solution

µi = u∂ip, νi = v∂iq, (13.6)
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whereu, v, p, q are certain local functions[19]. The remaining condition can then be cast
as

uvεijk∂i ln
(u
v

)
∂jp∂kq = 0. (13.7)

A functionf onM belongs to Casπ(M), if and only if

εijk(µ + ν)j∂kf = 0, (13.8)

or, on account of(13.6):

εijk(u∂jp + v∂jq)∂kf = 0. (13.9)

By (13.8), if the 1-formµ + ν vanishes at most in the complement of an open dense set,
then, at least locally,∂if = kf (µ + ν)i for some functionkf . In that case, as it easy to
see from the relation{f, g} = εijkµi∂jf∂kg, Casπ(M) is an Abelian Poisson subalgebra of
Fun(M). For instance, one may considerM = R

3 equipped with the Schouten commuting
Poisson 2-vectors� ij , ϑij corresponding to the compatible Poisson structures:

{x1, x2} = x3, {x2, x3} = x1, {x3, x1} = x2, (13.10)

{x1, x2}ϑ = 1
2 − (x3 + 1

2)
2, {x2, x3}ϑ = 0, {x3, x1}ϑ = 0. (13.11)

The resulting Poisson 2-vectorπij appears in the Poisson sigma model describing two-
dimensional EuclideanR2 gravity with cosmological constant[4]. A solution ofEq. (13.8)
is

f(x1, x2, x3) = 1
2(x

2
1 + x2

2) − 1
3x3(x

2
3 − 3

4). (13.12)

As another example, one may considerM = R
2×S

1 with the Schouten commuting Poisson
2-vectors� ij , ϑij defined by the compatible Poisson structures:

{x1, x2} = 0, {x1, ϕ} = 0, {x2, ϕ} = P(x1, x2), (13.13)

{x1, x2}ϑ = 0, {x1, ϕ}ϑ = −Q(x1, x2), {x2, ϕ}ϑ = 0, (13.14)

whereP(x1, x2), Q(x1, x2) are certain functions In this case,Eq. (13.8)reduces to

P(x1, x2)∂x2f−Q(x1, x2)∂x1f = 0, P(x1, x2)∂ϕf = Q(x1, x2)∂ϕf = 0. (13.15)

In the generic situation,∂ϕf = 0 and the first equation can be treated with standard analytical
techniques.

13.3. Four-dimensional Poisson spaces

Let M be a four-dimensional manifold. We equipM with an auxiliary metricgij . Any
2-vectorζij can be written as

ζij = 1
2ε

ijklαkl (13.16)

for some 2-formαij , whereεijkl is the Levi–Civita 4-vector associated togij . Let � ij , ϑij

be two 2-vectors and letµij , νij be the corresponding 2-forms in the representation(13.16).
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Then,� ij , ϑij are Schouten commuting Poisson 2-vectors, if and only if

εjklmµjk∇lµmi = 0, εjklm(µjk∇lνmi + νjk∇lµmi) = 0, εjklmνjk∇lνmi = 0,

(13.17)

where again∇i is the Riemannian connection ofgij . If one restricts oneself to degenerate
Poisson 2-vectors, i.e. with everywhere vanishing determinant, it is known that the first and
third condition have the local solution:

µij = u(∂ip∂jq − ∂jp∂iq), νij = v(∂ir∂js − ∂jr∂is), (13.18)

whereu, v, p, q, r, s are certain local functions[19]. The remaining condition can then be
cast as

εjklm[u∂jp∂kq(∂mr∇l(v∂is) − ∂ms∇l(v∂ir))

+ v∂jr∂ks(∂mp∇l(u∂iq) − ∂mq∇l(u∂ip))] = 0. (13.19)

A functionf onM belongs to Casπ(M), if and only if

εijkl (µ + ν)jk∂lf = 0, (13.20)

or, on account of(13.18):

εijkl (u∂jp∂kq + v∂jr∂ks)∂lf = 0. (13.21)

There is not much that can be said in general on the solution of this equation. As an example,
one can considerM = R

3 × R equipped with the Schouten commuting Poisson 2-vectors
� ij , ϑij corresponding to the compatible Poisson structures:

{xi, xj} =
3∑

k=1

εijkxky, {xi, y} = 0, (13.22)

{xi, xj}ϑ = 0, {xi, y}ϑ =
3∑

j,k=1

εijk(aj − ak)xjxk, (13.23)

whereεijk is three-dimensional totally antisymmetric symbol and theai the real numbers.
The resulting Poisson 2-vectorπij is that of the famous Sklyanin Poisson structure[20].
Eq. (13.20)is solved by

f1(x1, x2, x3, y) = 1

2

3∑
i=1

aix
2
i − 1

4
y2, f2(x1, x2, x3, y) = 1

2

3∑
i=1

x2
i . (13.24)

f2 is a common Casimir function of both� ij andϑij and so is not of any use.

13.4. Affine Lie–Poisson spaces

Lie–Poisson spaces appear in the Poisson sigma model describing two-dimensional
Yang–Mills theory[4]. An interesting generalization is provided by the so-called affine
Lie–Poisson spaces[17]. As an example, we considerM = R

n with the 2-vectors

� ij (x) = c
ij
k x

k, ϑij (x) = aij , (13.25)
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where the constantscij
k , aij satisfy

cij
mc

mk
l + cjk

mc
mi
l + cki

mc
mj
l = 0, (13.26)

cij
ma

mk + cjk
ma

mi + cki
ma

mj = 0. (13.27)

As is well-known,(13.26) and (13.27)state thatRn∨ is a Lie algebra with structure constants
c

ij
k and thataij is a Chevalley–Eilenberg 2-cocycle ofR

n∨. � ij , ϑij are Schouten commut-
ing Poisson 2-vectors.� ij is usually called Kirillov–Kostant–Souriau Poisson structure
[21–23]. A functionf onM belongs to Casπ(M), if and only if

(c
ij
k x

k + aij )∂jf = 0. (13.28)

An example is provided byM = R
4 with the Poisson structures defined by

{x0, xi} = xi+1, 1 ≤ i ≤ 3, {xi, xj} = 0, 1 ≤ i, j ≤ 3, (13.29)

{x0, xi}ϑ = aδi,1, 1 ≤ i ≤ 3, {xi, xj}ϑ = 0, 1 ≤ i, j ≤ 3, (13.30)

wherea is a real number andx4 = 0 by convention. A solution of(13.28)is given by

f(x0, x1, x2, x3) = (x1x3 − 1
2(x2 + a)2)g(x3), (13.31)

whereg is an arbitrary function.

13.5. Compact Poisson Riemannian symmetric spaces

LetM be a compact Riemannian symmetric space with metricgij . Then, ifσij , τij are two
harmonic 2-forms:

� ij = gikgjlσkl, ϑij = gikgjl τkl (13.32)

are Schouten commuting Poisson 2-vectors[17]. Of course, this example is to be considered
trivial unless the Betti numberb2(M) ≥ 2.
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